L(s) = 1 | + (−0.482 − 1.48i)3-s + (−2.88 − 2.09i)5-s + (−0.965 + 2.97i)7-s + (0.454 − 0.330i)9-s + (−4.14 + 3.01i)13-s + (−1.71 + 5.28i)15-s + (1.61 + 1.17i)17-s + (1.23 + 3.80i)19-s + 4.87·21-s + 2.43·23-s + (2.37 + 7.30i)25-s + (−4.49 − 3.26i)27-s + (1.58 − 4.87i)29-s + (4.49 − 3.26i)31-s + (8.99 − 6.53i)35-s + ⋯ |
L(s) = 1 | + (−0.278 − 0.857i)3-s + (−1.28 − 0.936i)5-s + (−0.364 + 1.12i)7-s + (0.151 − 0.110i)9-s + (−1.14 + 0.835i)13-s + (−0.443 + 1.36i)15-s + (0.392 + 0.285i)17-s + (0.283 + 0.872i)19-s + 1.06·21-s + 0.508·23-s + (0.474 + 1.46i)25-s + (−0.865 − 0.629i)27-s + (0.293 − 0.904i)29-s + (0.808 − 0.587i)31-s + (1.52 − 1.10i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.782 - 0.622i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 968 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.782 - 0.622i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.669407 + 0.233894i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.669407 + 0.233894i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
good | 3 | \( 1 + (0.482 + 1.48i)T + (-2.42 + 1.76i)T^{2} \) |
| 5 | \( 1 + (2.88 + 2.09i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.965 - 2.97i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (4.14 - 3.01i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.61 - 1.17i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.23 - 3.80i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 2.43T + 23T^{2} \) |
| 29 | \( 1 + (-1.58 + 4.87i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-4.49 + 3.26i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.33 - 7.19i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.347 - 1.06i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 7.12T + 43T^{2} \) |
| 47 | \( 1 + (-2.47 - 7.60i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (9.90 - 7.19i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.41 + 7.42i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-0.908 - 0.660i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 9.56T + 67T^{2} \) |
| 71 | \( 1 + (-7.02 - 5.10i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (1.58 - 4.87i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (8.99 - 6.53i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.709 - 0.515i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 2.68T + 89T^{2} \) |
| 97 | \( 1 + (12.5 - 9.14i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.832703577901953772446593540117, −9.261383528102800094972082956467, −8.191479630106169849684098372056, −7.74357230049674014023182206000, −6.76297759829433578346609810561, −5.88360862131935933162356626282, −4.81965730501724992104043739156, −3.95528154062837327568856908587, −2.54318486927288227240168104634, −1.12609283814508397222872192531,
0.40602369501207678090111593996, 2.89411778344319084791083788264, 3.64420321355245485868387036150, 4.50659900512846252396051793059, 5.30345502434784498724312402347, 7.03091283502900566298707724656, 7.14905740766578045637419222274, 8.037096497261317012836499617702, 9.344294054181034321634120370136, 10.23834838613389339010293433143