L(s) = 1 | + (0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.739 + 1.28i)5-s + 0.999·6-s + (1.32 + 2.29i)7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (0.739 + 1.28i)10-s + (−2.85 − 4.94i)11-s + (0.499 − 0.866i)12-s + 6.35·13-s + 2.64·14-s − 1.47·15-s + (−0.5 + 0.866i)16-s + (2.06 + 3.57i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.330 + 0.572i)5-s + 0.408·6-s + (0.499 + 0.866i)7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (0.233 + 0.405i)10-s + (−0.859 − 1.48i)11-s + (0.144 − 0.249i)12-s + 1.76·13-s + 0.707·14-s − 0.381·15-s + (−0.125 + 0.216i)16-s + (0.500 + 0.866i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.89689 + 0.573267i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.89689 + 0.573267i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-1.32 - 2.29i)T \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (0.739 - 1.28i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.85 + 4.94i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 6.35T + 13T^{2} \) |
| 17 | \( 1 + (-2.06 - 3.57i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.69 - 2.93i)T + (-9.5 - 16.4i)T^{2} \) |
| 29 | \( 1 - 2.39T + 29T^{2} \) |
| 31 | \( 1 + (-3.90 - 6.76i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.17 - 7.23i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 7.39T + 41T^{2} \) |
| 43 | \( 1 - 2T + 43T^{2} \) |
| 47 | \( 1 + (5.11 - 8.85i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.260 + 0.451i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.68 + 6.38i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.52 + 4.36i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7.70 + 13.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9.87T + 71T^{2} \) |
| 73 | \( 1 + (4.46 + 7.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.71 + 11.6i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 9.22T + 83T^{2} \) |
| 89 | \( 1 + (-3.21 + 5.57i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 10.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.56397991013698218953782110181, −9.244094297888275007354155466805, −8.289156908115399802426730225857, −8.160690664459739404833677797455, −6.25969164793082155657446743503, −5.78663639606028398761840815919, −4.70608806255920420578703078056, −3.37183496764510524353310868538, −3.13751036255344832119267435600, −1.52641132320620995268383451907,
0.883687605193698128324155961773, 2.45463746133463861279947110657, 3.95882541029332949109262696145, 4.57755167854189546532859823736, 5.58158364469713357710326598669, 6.75773268392422275303852070998, 7.40904237100922077282777691210, 8.119101448815859513767645120864, 8.761454938454153719590629468396, 9.855112718819374346270795845027