Properties

Label 2-966-161.32-c1-0-24
Degree $2$
Conductor $966$
Sign $0.312 + 0.949i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.723 − 0.690i)2-s + (0.981 − 0.189i)3-s + (0.0475 + 0.998i)4-s + (1.80 − 1.42i)5-s + (−0.841 − 0.540i)6-s + (1.41 + 2.23i)7-s + (0.654 − 0.755i)8-s + (0.928 − 0.371i)9-s + (−2.29 − 0.218i)10-s + (4.30 − 4.10i)11-s + (0.235 + 0.971i)12-s + (−2.24 − 4.90i)13-s + (0.513 − 2.59i)14-s + (1.50 − 1.73i)15-s + (−0.995 + 0.0950i)16-s + (−3.78 + 1.95i)17-s + ⋯
L(s)  = 1  + (−0.511 − 0.487i)2-s + (0.566 − 0.109i)3-s + (0.0237 + 0.499i)4-s + (0.809 − 0.636i)5-s + (−0.343 − 0.220i)6-s + (0.536 + 0.843i)7-s + (0.231 − 0.267i)8-s + (0.309 − 0.123i)9-s + (−0.724 − 0.0691i)10-s + (1.29 − 1.23i)11-s + (0.0680 + 0.280i)12-s + (−0.621 − 1.36i)13-s + (0.137 − 0.693i)14-s + (0.389 − 0.449i)15-s + (−0.248 + 0.0237i)16-s + (−0.918 + 0.473i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.312 + 0.949i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.312 + 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $0.312 + 0.949i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (193, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ 0.312 + 0.949i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.50581 - 1.08923i\)
\(L(\frac12)\) \(\approx\) \(1.50581 - 1.08923i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.723 + 0.690i)T \)
3 \( 1 + (-0.981 + 0.189i)T \)
7 \( 1 + (-1.41 - 2.23i)T \)
23 \( 1 + (-2.89 - 3.82i)T \)
good5 \( 1 + (-1.80 + 1.42i)T + (1.17 - 4.85i)T^{2} \)
11 \( 1 + (-4.30 + 4.10i)T + (0.523 - 10.9i)T^{2} \)
13 \( 1 + (2.24 + 4.90i)T + (-8.51 + 9.82i)T^{2} \)
17 \( 1 + (3.78 - 1.95i)T + (9.86 - 13.8i)T^{2} \)
19 \( 1 + (3.36 + 1.73i)T + (11.0 + 15.4i)T^{2} \)
29 \( 1 + (-5.14 - 3.30i)T + (12.0 + 26.3i)T^{2} \)
31 \( 1 + (2.03 + 5.87i)T + (-24.3 + 19.1i)T^{2} \)
37 \( 1 + (-5.22 + 2.09i)T + (26.7 - 25.5i)T^{2} \)
41 \( 1 + (1.02 + 7.14i)T + (-39.3 + 11.5i)T^{2} \)
43 \( 1 + (-5.64 - 6.51i)T + (-6.11 + 42.5i)T^{2} \)
47 \( 1 + (-4.50 - 7.79i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (4.22 + 5.93i)T + (-17.3 + 50.0i)T^{2} \)
59 \( 1 + (6.93 + 0.662i)T + (57.9 + 11.1i)T^{2} \)
61 \( 1 + (2.98 + 0.575i)T + (56.6 + 22.6i)T^{2} \)
67 \( 1 + (-0.549 + 2.26i)T + (-59.5 - 30.7i)T^{2} \)
71 \( 1 + (6.24 - 1.83i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (-0.328 - 6.89i)T + (-72.6 + 6.93i)T^{2} \)
79 \( 1 + (-9.29 + 13.0i)T + (-25.8 - 74.6i)T^{2} \)
83 \( 1 + (0.203 - 1.41i)T + (-79.6 - 23.3i)T^{2} \)
89 \( 1 + (3.74 - 10.8i)T + (-69.9 - 55.0i)T^{2} \)
97 \( 1 + (-0.428 - 2.98i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.448386451513863687546364944388, −9.118021556528413635941519107432, −8.485309539439075786759590177051, −7.69873690280645359077236667657, −6.35103088939541123696224494479, −5.58614543716812966113255866810, −4.43710424465035788467075218334, −3.15265671977053646070775028444, −2.18173693636801971402475546252, −1.06827172893096936789282138143, 1.60012940671088376136297942277, 2.41966710419234755659935107460, 4.27436636121118329024822397977, 4.63933366092089560122436941887, 6.47552980672195749276152449328, 6.75878165215717826673436441842, 7.49943189614996333259744631792, 8.709880539007023060946641709858, 9.306916962502536160391977411197, 10.03039653028806236867846229354

Graph of the $Z$-function along the critical line