Properties

Label 2-966-161.32-c1-0-23
Degree $2$
Conductor $966$
Sign $0.892 - 0.451i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.723 + 0.690i)2-s + (0.981 − 0.189i)3-s + (0.0475 + 0.998i)4-s + (3.28 − 2.58i)5-s + (0.841 + 0.540i)6-s + (2.43 + 1.04i)7-s + (−0.654 + 0.755i)8-s + (0.928 − 0.371i)9-s + (4.15 + 0.397i)10-s + (−1.89 + 1.80i)11-s + (0.235 + 0.971i)12-s + (2.09 + 4.57i)13-s + (1.03 + 2.43i)14-s + (2.73 − 3.15i)15-s + (−0.995 + 0.0950i)16-s + (−2.99 + 1.54i)17-s + ⋯
L(s)  = 1  + (0.511 + 0.487i)2-s + (0.566 − 0.109i)3-s + (0.0237 + 0.499i)4-s + (1.46 − 1.15i)5-s + (0.343 + 0.220i)6-s + (0.918 + 0.394i)7-s + (−0.231 + 0.267i)8-s + (0.309 − 0.123i)9-s + (1.31 + 0.125i)10-s + (−0.569 + 0.543i)11-s + (0.0680 + 0.280i)12-s + (0.579 + 1.26i)13-s + (0.277 + 0.650i)14-s + (0.706 − 0.815i)15-s + (−0.248 + 0.0237i)16-s + (−0.727 + 0.374i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.892 - 0.451i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.892 - 0.451i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $0.892 - 0.451i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (193, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ 0.892 - 0.451i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.25933 + 0.776967i\)
\(L(\frac12)\) \(\approx\) \(3.25933 + 0.776967i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.723 - 0.690i)T \)
3 \( 1 + (-0.981 + 0.189i)T \)
7 \( 1 + (-2.43 - 1.04i)T \)
23 \( 1 + (4.70 - 0.944i)T \)
good5 \( 1 + (-3.28 + 2.58i)T + (1.17 - 4.85i)T^{2} \)
11 \( 1 + (1.89 - 1.80i)T + (0.523 - 10.9i)T^{2} \)
13 \( 1 + (-2.09 - 4.57i)T + (-8.51 + 9.82i)T^{2} \)
17 \( 1 + (2.99 - 1.54i)T + (9.86 - 13.8i)T^{2} \)
19 \( 1 + (3.06 + 1.58i)T + (11.0 + 15.4i)T^{2} \)
29 \( 1 + (1.84 + 1.18i)T + (12.0 + 26.3i)T^{2} \)
31 \( 1 + (2.28 + 6.60i)T + (-24.3 + 19.1i)T^{2} \)
37 \( 1 + (-11.2 + 4.49i)T + (26.7 - 25.5i)T^{2} \)
41 \( 1 + (-1.03 - 7.19i)T + (-39.3 + 11.5i)T^{2} \)
43 \( 1 + (1.20 + 1.38i)T + (-6.11 + 42.5i)T^{2} \)
47 \( 1 + (2.45 + 4.24i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (4.68 + 6.57i)T + (-17.3 + 50.0i)T^{2} \)
59 \( 1 + (4.29 + 0.410i)T + (57.9 + 11.1i)T^{2} \)
61 \( 1 + (13.0 + 2.51i)T + (56.6 + 22.6i)T^{2} \)
67 \( 1 + (1.15 - 4.76i)T + (-59.5 - 30.7i)T^{2} \)
71 \( 1 + (4.53 - 1.33i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (-0.00355 - 0.0745i)T + (-72.6 + 6.93i)T^{2} \)
79 \( 1 + (-5.48 + 7.70i)T + (-25.8 - 74.6i)T^{2} \)
83 \( 1 + (-0.850 + 5.91i)T + (-79.6 - 23.3i)T^{2} \)
89 \( 1 + (1.71 - 4.96i)T + (-69.9 - 55.0i)T^{2} \)
97 \( 1 + (-2.05 - 14.2i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.683617417997725983223002234709, −9.158785689253653009196619944772, −8.438756867105012958988203174209, −7.72080793494213586227251174281, −6.36807956000636685334884135155, −5.84314121964592128817449257790, −4.69845022855930030743607941573, −4.28834148511210779119093046891, −2.24047148765498162205720075287, −1.81984249333375997443761021276, 1.59168997849601616173940659056, 2.57026160970314389475622556918, 3.31313032611168286879854273147, 4.61069315885585998497352072438, 5.69066550304817614274039183272, 6.26669730128883788140174575288, 7.43665191845120757291430007086, 8.319329288058527536611404366302, 9.335109171714686851812905562670, 10.27606147946619818812833399547

Graph of the $Z$-function along the critical line