Properties

Label 2-966-161.20-c1-0-6
Degree $2$
Conductor $966$
Sign $-0.171 - 0.985i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.142 − 0.989i)2-s + (0.909 + 0.415i)3-s + (−0.959 + 0.281i)4-s + (−1.10 + 1.27i)5-s + (0.281 − 0.959i)6-s + (1.52 + 2.15i)7-s + (0.415 + 0.909i)8-s + (0.654 + 0.755i)9-s + (1.41 + 0.910i)10-s + (−3.28 − 0.472i)11-s + (−0.989 − 0.142i)12-s + (−0.697 + 1.08i)13-s + (1.92 − 1.82i)14-s + (−1.53 + 0.699i)15-s + (0.841 − 0.540i)16-s + (−0.711 − 0.208i)17-s + ⋯
L(s)  = 1  + (−0.100 − 0.699i)2-s + (0.525 + 0.239i)3-s + (−0.479 + 0.140i)4-s + (−0.493 + 0.568i)5-s + (0.115 − 0.391i)6-s + (0.577 + 0.816i)7-s + (0.146 + 0.321i)8-s + (0.218 + 0.251i)9-s + (0.447 + 0.287i)10-s + (−0.990 − 0.142i)11-s + (−0.285 − 0.0410i)12-s + (−0.193 + 0.300i)13-s + (0.513 − 0.486i)14-s + (−0.395 + 0.180i)15-s + (0.210 − 0.135i)16-s + (−0.172 − 0.0506i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.171 - 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.171 - 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $-0.171 - 0.985i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (181, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ -0.171 - 0.985i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.614714 + 0.730773i\)
\(L(\frac12)\) \(\approx\) \(0.614714 + 0.730773i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.142 + 0.989i)T \)
3 \( 1 + (-0.909 - 0.415i)T \)
7 \( 1 + (-1.52 - 2.15i)T \)
23 \( 1 + (-4.41 + 1.86i)T \)
good5 \( 1 + (1.10 - 1.27i)T + (-0.711 - 4.94i)T^{2} \)
11 \( 1 + (3.28 + 0.472i)T + (10.5 + 3.09i)T^{2} \)
13 \( 1 + (0.697 - 1.08i)T + (-5.40 - 11.8i)T^{2} \)
17 \( 1 + (0.711 + 0.208i)T + (14.3 + 9.19i)T^{2} \)
19 \( 1 + (6.49 - 1.90i)T + (15.9 - 10.2i)T^{2} \)
29 \( 1 + (5.76 + 1.69i)T + (24.3 + 15.6i)T^{2} \)
31 \( 1 + (8.46 - 3.86i)T + (20.3 - 23.4i)T^{2} \)
37 \( 1 + (-1.30 + 1.13i)T + (5.26 - 36.6i)T^{2} \)
41 \( 1 + (-0.0528 - 0.0457i)T + (5.83 + 40.5i)T^{2} \)
43 \( 1 + (-4.79 - 2.19i)T + (28.1 + 32.4i)T^{2} \)
47 \( 1 - 0.942iT - 47T^{2} \)
53 \( 1 + (2.45 + 3.82i)T + (-22.0 + 48.2i)T^{2} \)
59 \( 1 + (4.80 - 7.48i)T + (-24.5 - 53.6i)T^{2} \)
61 \( 1 + (-5.39 - 11.8i)T + (-39.9 + 46.1i)T^{2} \)
67 \( 1 + (-4.18 + 0.602i)T + (64.2 - 18.8i)T^{2} \)
71 \( 1 + (-0.157 - 1.09i)T + (-68.1 + 20.0i)T^{2} \)
73 \( 1 + (-2.11 - 7.20i)T + (-61.4 + 39.4i)T^{2} \)
79 \( 1 + (-5.84 + 9.09i)T + (-32.8 - 71.8i)T^{2} \)
83 \( 1 + (-5.21 - 6.01i)T + (-11.8 + 82.1i)T^{2} \)
89 \( 1 + (-2.54 + 5.58i)T + (-58.2 - 67.2i)T^{2} \)
97 \( 1 + (-4.56 + 5.26i)T + (-13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.50896752241378136631333489595, −9.306098114502032663482700284661, −8.738401530614341651451525521735, −7.926703074724580988587785803250, −7.14795619554314204196756378541, −5.74925096146926998348336393571, −4.79924210672636331155810123991, −3.80054476877597241503518483834, −2.76437478090829897728697096936, −1.96430696168356510244939620297, 0.40956266883293658045592452993, 2.07160961273382319943798587320, 3.65351475657398018674098399328, 4.56944829384518569202600278281, 5.31594908599585646715236161119, 6.61497641613759681355955113914, 7.53648241636195101066781099129, 7.928974824237977130729583555785, 8.740632682253608207385641520297, 9.517460098184839194166008601407

Graph of the $Z$-function along the critical line