Properties

Label 2-966-161.20-c1-0-3
Degree $2$
Conductor $966$
Sign $0.302 - 0.953i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.142 − 0.989i)2-s + (−0.909 − 0.415i)3-s + (−0.959 + 0.281i)4-s + (0.880 − 1.01i)5-s + (−0.281 + 0.959i)6-s + (−1.33 + 2.28i)7-s + (0.415 + 0.909i)8-s + (0.654 + 0.755i)9-s + (−1.13 − 0.726i)10-s + (−1.76 − 0.253i)11-s + (0.989 + 0.142i)12-s + (2.23 − 3.47i)13-s + (2.44 + 1.00i)14-s + (−1.22 + 0.558i)15-s + (0.841 − 0.540i)16-s + (−0.880 − 0.258i)17-s + ⋯
L(s)  = 1  + (−0.100 − 0.699i)2-s + (−0.525 − 0.239i)3-s + (−0.479 + 0.140i)4-s + (0.393 − 0.454i)5-s + (−0.115 + 0.391i)6-s + (−0.506 + 0.862i)7-s + (0.146 + 0.321i)8-s + (0.218 + 0.251i)9-s + (−0.357 − 0.229i)10-s + (−0.530 − 0.0763i)11-s + (0.285 + 0.0410i)12-s + (0.619 − 0.963i)13-s + (0.654 + 0.267i)14-s + (−0.315 + 0.144i)15-s + (0.210 − 0.135i)16-s + (−0.213 − 0.0626i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.302 - 0.953i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.302 - 0.953i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $0.302 - 0.953i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (181, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ 0.302 - 0.953i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.370161 + 0.270925i\)
\(L(\frac12)\) \(\approx\) \(0.370161 + 0.270925i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.142 + 0.989i)T \)
3 \( 1 + (0.909 + 0.415i)T \)
7 \( 1 + (1.33 - 2.28i)T \)
23 \( 1 + (2.31 - 4.19i)T \)
good5 \( 1 + (-0.880 + 1.01i)T + (-0.711 - 4.94i)T^{2} \)
11 \( 1 + (1.76 + 0.253i)T + (10.5 + 3.09i)T^{2} \)
13 \( 1 + (-2.23 + 3.47i)T + (-5.40 - 11.8i)T^{2} \)
17 \( 1 + (0.880 + 0.258i)T + (14.3 + 9.19i)T^{2} \)
19 \( 1 + (7.64 - 2.24i)T + (15.9 - 10.2i)T^{2} \)
29 \( 1 + (-3.81 - 1.11i)T + (24.3 + 15.6i)T^{2} \)
31 \( 1 + (4.71 - 2.15i)T + (20.3 - 23.4i)T^{2} \)
37 \( 1 + (8.21 - 7.11i)T + (5.26 - 36.6i)T^{2} \)
41 \( 1 + (-4.77 - 4.14i)T + (5.83 + 40.5i)T^{2} \)
43 \( 1 + (-1.97 - 0.900i)T + (28.1 + 32.4i)T^{2} \)
47 \( 1 + 8.50iT - 47T^{2} \)
53 \( 1 + (-6.09 - 9.48i)T + (-22.0 + 48.2i)T^{2} \)
59 \( 1 + (5.76 - 8.97i)T + (-24.5 - 53.6i)T^{2} \)
61 \( 1 + (-1.00 - 2.19i)T + (-39.9 + 46.1i)T^{2} \)
67 \( 1 + (-8.49 + 1.22i)T + (64.2 - 18.8i)T^{2} \)
71 \( 1 + (-0.145 - 1.01i)T + (-68.1 + 20.0i)T^{2} \)
73 \( 1 + (3.04 + 10.3i)T + (-61.4 + 39.4i)T^{2} \)
79 \( 1 + (-4.26 + 6.63i)T + (-32.8 - 71.8i)T^{2} \)
83 \( 1 + (-7.16 - 8.27i)T + (-11.8 + 82.1i)T^{2} \)
89 \( 1 + (0.718 - 1.57i)T + (-58.2 - 67.2i)T^{2} \)
97 \( 1 + (10.4 - 12.1i)T + (-13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46795957955625548207527682058, −9.385712125221244330262304592044, −8.661912339854011559859595628839, −7.936306993564678041757961257252, −6.58095183090567019035641874331, −5.70904784885583867144071237454, −5.12817796068153696456247531843, −3.78121447145722398103511711731, −2.62867626103319242203795662605, −1.47869953948725207412075013395, 0.23389926239484589480060451630, 2.22496388587191269963671763047, 3.90288308913713421327085495342, 4.50342737517843853452125802570, 5.77312186448937658474195993745, 6.60996278766568709089527506299, 6.90168795204451690843302494811, 8.164921328263241724394060267008, 9.012144316104981409878063428468, 9.909463923270180975151366854175

Graph of the $Z$-function along the critical line