Properties

Label 2-966-161.20-c1-0-19
Degree $2$
Conductor $966$
Sign $0.0826 + 0.996i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.142 − 0.989i)2-s + (−0.909 − 0.415i)3-s + (−0.959 + 0.281i)4-s + (1.10 − 1.27i)5-s + (−0.281 + 0.959i)6-s + (1.32 + 2.28i)7-s + (0.415 + 0.909i)8-s + (0.654 + 0.755i)9-s + (−1.41 − 0.910i)10-s + (−3.28 − 0.472i)11-s + (0.989 + 0.142i)12-s + (0.697 − 1.08i)13-s + (2.07 − 1.64i)14-s + (−1.53 + 0.699i)15-s + (0.841 − 0.540i)16-s + (0.711 + 0.208i)17-s + ⋯
L(s)  = 1  + (−0.100 − 0.699i)2-s + (−0.525 − 0.239i)3-s + (−0.479 + 0.140i)4-s + (0.493 − 0.568i)5-s + (−0.115 + 0.391i)6-s + (0.502 + 0.864i)7-s + (0.146 + 0.321i)8-s + (0.218 + 0.251i)9-s + (−0.447 − 0.287i)10-s + (−0.990 − 0.142i)11-s + (0.285 + 0.0410i)12-s + (0.193 − 0.300i)13-s + (0.554 − 0.438i)14-s + (−0.395 + 0.180i)15-s + (0.210 − 0.135i)16-s + (0.172 + 0.0506i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0826 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0826 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $0.0826 + 0.996i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (181, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ 0.0826 + 0.996i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.991896 - 0.913061i\)
\(L(\frac12)\) \(\approx\) \(0.991896 - 0.913061i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.142 + 0.989i)T \)
3 \( 1 + (0.909 + 0.415i)T \)
7 \( 1 + (-1.32 - 2.28i)T \)
23 \( 1 + (-4.41 + 1.86i)T \)
good5 \( 1 + (-1.10 + 1.27i)T + (-0.711 - 4.94i)T^{2} \)
11 \( 1 + (3.28 + 0.472i)T + (10.5 + 3.09i)T^{2} \)
13 \( 1 + (-0.697 + 1.08i)T + (-5.40 - 11.8i)T^{2} \)
17 \( 1 + (-0.711 - 0.208i)T + (14.3 + 9.19i)T^{2} \)
19 \( 1 + (-6.49 + 1.90i)T + (15.9 - 10.2i)T^{2} \)
29 \( 1 + (5.76 + 1.69i)T + (24.3 + 15.6i)T^{2} \)
31 \( 1 + (-8.46 + 3.86i)T + (20.3 - 23.4i)T^{2} \)
37 \( 1 + (-1.30 + 1.13i)T + (5.26 - 36.6i)T^{2} \)
41 \( 1 + (0.0528 + 0.0457i)T + (5.83 + 40.5i)T^{2} \)
43 \( 1 + (-4.79 - 2.19i)T + (28.1 + 32.4i)T^{2} \)
47 \( 1 + 0.942iT - 47T^{2} \)
53 \( 1 + (2.45 + 3.82i)T + (-22.0 + 48.2i)T^{2} \)
59 \( 1 + (-4.80 + 7.48i)T + (-24.5 - 53.6i)T^{2} \)
61 \( 1 + (5.39 + 11.8i)T + (-39.9 + 46.1i)T^{2} \)
67 \( 1 + (-4.18 + 0.602i)T + (64.2 - 18.8i)T^{2} \)
71 \( 1 + (-0.157 - 1.09i)T + (-68.1 + 20.0i)T^{2} \)
73 \( 1 + (2.11 + 7.20i)T + (-61.4 + 39.4i)T^{2} \)
79 \( 1 + (-5.84 + 9.09i)T + (-32.8 - 71.8i)T^{2} \)
83 \( 1 + (5.21 + 6.01i)T + (-11.8 + 82.1i)T^{2} \)
89 \( 1 + (2.54 - 5.58i)T + (-58.2 - 67.2i)T^{2} \)
97 \( 1 + (4.56 - 5.26i)T + (-13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.758422136864715012782661134929, −9.211100860666172426642033805658, −8.213560857647510877774963170599, −7.53851878796487061179368209810, −6.09339553370340230995431960786, −5.27044536240508933277810904461, −4.83779973548355006311391543210, −3.16622799784704709070888488423, −2.13404771203811326957508150373, −0.869622356918880035033532741760, 1.16975525805087199095499858102, 2.96342718604491587637809674799, 4.24254014945413635363760413703, 5.18503473959678881331833382734, 5.85141431941949590785812143387, 6.98364223980234812457386828978, 7.43636212301376329800499400293, 8.397672382845098147382637846409, 9.570141150791202571261047893067, 10.18204490115695957813025612147

Graph of the $Z$-function along the critical line