Properties

Label 2-966-161.20-c1-0-13
Degree $2$
Conductor $966$
Sign $0.723 - 0.690i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.142 + 0.989i)2-s + (−0.909 − 0.415i)3-s + (−0.959 + 0.281i)4-s + (0.889 − 1.02i)5-s + (0.281 − 0.959i)6-s + (−2.54 + 0.734i)7-s + (−0.415 − 0.909i)8-s + (0.654 + 0.755i)9-s + (1.14 + 0.734i)10-s + (4.24 + 0.610i)11-s + (0.989 + 0.142i)12-s + (−0.475 + 0.739i)13-s + (−1.08 − 2.41i)14-s + (−1.23 + 0.564i)15-s + (0.841 − 0.540i)16-s + (−3.28 − 0.964i)17-s + ⋯
L(s)  = 1  + (0.100 + 0.699i)2-s + (−0.525 − 0.239i)3-s + (−0.479 + 0.140i)4-s + (0.397 − 0.458i)5-s + (0.115 − 0.391i)6-s + (−0.960 + 0.277i)7-s + (−0.146 − 0.321i)8-s + (0.218 + 0.251i)9-s + (0.361 + 0.232i)10-s + (1.28 + 0.184i)11-s + (0.285 + 0.0410i)12-s + (−0.131 + 0.205i)13-s + (−0.290 − 0.644i)14-s + (−0.318 + 0.145i)15-s + (0.210 − 0.135i)16-s + (−0.796 − 0.233i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.723 - 0.690i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.723 - 0.690i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $0.723 - 0.690i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (181, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ 0.723 - 0.690i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.23016 + 0.493122i\)
\(L(\frac12)\) \(\approx\) \(1.23016 + 0.493122i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.142 - 0.989i)T \)
3 \( 1 + (0.909 + 0.415i)T \)
7 \( 1 + (2.54 - 0.734i)T \)
23 \( 1 + (-1.17 + 4.65i)T \)
good5 \( 1 + (-0.889 + 1.02i)T + (-0.711 - 4.94i)T^{2} \)
11 \( 1 + (-4.24 - 0.610i)T + (10.5 + 3.09i)T^{2} \)
13 \( 1 + (0.475 - 0.739i)T + (-5.40 - 11.8i)T^{2} \)
17 \( 1 + (3.28 + 0.964i)T + (14.3 + 9.19i)T^{2} \)
19 \( 1 + (-1.33 + 0.393i)T + (15.9 - 10.2i)T^{2} \)
29 \( 1 + (-7.19 - 2.11i)T + (24.3 + 15.6i)T^{2} \)
31 \( 1 + (-7.83 + 3.57i)T + (20.3 - 23.4i)T^{2} \)
37 \( 1 + (3.18 - 2.75i)T + (5.26 - 36.6i)T^{2} \)
41 \( 1 + (-2.57 - 2.23i)T + (5.83 + 40.5i)T^{2} \)
43 \( 1 + (-9.02 - 4.12i)T + (28.1 + 32.4i)T^{2} \)
47 \( 1 - 6.53iT - 47T^{2} \)
53 \( 1 + (-6.35 - 9.88i)T + (-22.0 + 48.2i)T^{2} \)
59 \( 1 + (-7.72 + 12.0i)T + (-24.5 - 53.6i)T^{2} \)
61 \( 1 + (-1.04 - 2.27i)T + (-39.9 + 46.1i)T^{2} \)
67 \( 1 + (11.2 - 1.62i)T + (64.2 - 18.8i)T^{2} \)
71 \( 1 + (0.321 + 2.23i)T + (-68.1 + 20.0i)T^{2} \)
73 \( 1 + (1.79 + 6.11i)T + (-61.4 + 39.4i)T^{2} \)
79 \( 1 + (-7.04 + 10.9i)T + (-32.8 - 71.8i)T^{2} \)
83 \( 1 + (-6.62 - 7.64i)T + (-11.8 + 82.1i)T^{2} \)
89 \( 1 + (6.82 - 14.9i)T + (-58.2 - 67.2i)T^{2} \)
97 \( 1 + (-8.30 + 9.58i)T + (-13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.833074455019723144162833826835, −9.228692628292214465665729228077, −8.581317747074597386141118740860, −7.31790188747160234444725521921, −6.45152862360200112768889358347, −6.18219953787022651280254874011, −4.94268566546859894723556231333, −4.19776337100169261427854061212, −2.72678374825749822479538222056, −0.996196132047855682761401555788, 0.894136390172298526849793727111, 2.49825430392214350073426006183, 3.59306504511784150866874508584, 4.36916326827422702799131325262, 5.63802023280223982387526508123, 6.45284856023748059482987633644, 7.06228141234896310686217988918, 8.608451587568916835071166949413, 9.320867692974511422816937446976, 10.20876450966483094851473381443

Graph of the $Z$-function along the critical line