Properties

Label 2-966-161.19-c1-0-0
Degree $2$
Conductor $966$
Sign $-0.920 - 0.391i$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.995 − 0.0950i)2-s + (−0.690 + 0.723i)3-s + (0.981 + 0.189i)4-s + (−2.11 + 1.08i)5-s + (0.755 − 0.654i)6-s + (0.852 − 2.50i)7-s + (−0.959 − 0.281i)8-s + (−0.0475 − 0.998i)9-s + (2.20 − 0.883i)10-s + (0.0226 + 0.237i)11-s + (−0.814 + 0.580i)12-s + (2.58 + 0.371i)13-s + (−1.08 + 2.41i)14-s + (0.669 − 2.28i)15-s + (0.928 + 0.371i)16-s + (−2.25 + 6.51i)17-s + ⋯
L(s)  = 1  + (−0.703 − 0.0672i)2-s + (−0.398 + 0.417i)3-s + (0.490 + 0.0946i)4-s + (−0.945 + 0.487i)5-s + (0.308 − 0.267i)6-s + (0.322 − 0.946i)7-s + (−0.339 − 0.0996i)8-s + (−0.0158 − 0.332i)9-s + (0.697 − 0.279i)10-s + (0.00683 + 0.0715i)11-s + (−0.235 + 0.167i)12-s + (0.717 + 0.103i)13-s + (−0.290 + 0.644i)14-s + (0.172 − 0.588i)15-s + (0.232 + 0.0929i)16-s + (−0.546 + 1.57i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.920 - 0.391i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.920 - 0.391i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $-0.920 - 0.391i$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{966} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ -0.920 - 0.391i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0573602 + 0.281283i\)
\(L(\frac12)\) \(\approx\) \(0.0573602 + 0.281283i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.995 + 0.0950i)T \)
3 \( 1 + (0.690 - 0.723i)T \)
7 \( 1 + (-0.852 + 2.50i)T \)
23 \( 1 + (-4.77 - 0.495i)T \)
good5 \( 1 + (2.11 - 1.08i)T + (2.90 - 4.07i)T^{2} \)
11 \( 1 + (-0.0226 - 0.237i)T + (-10.8 + 2.08i)T^{2} \)
13 \( 1 + (-2.58 - 0.371i)T + (12.4 + 3.66i)T^{2} \)
17 \( 1 + (2.25 - 6.51i)T + (-13.3 - 10.5i)T^{2} \)
19 \( 1 + (1.71 + 4.94i)T + (-14.9 + 11.7i)T^{2} \)
29 \( 1 + (-3.12 - 3.60i)T + (-4.12 + 28.7i)T^{2} \)
31 \( 1 + (7.33 - 1.77i)T + (27.5 - 14.2i)T^{2} \)
37 \( 1 + (2.38 - 0.113i)T + (36.8 - 3.51i)T^{2} \)
41 \( 1 + (2.56 - 3.98i)T + (-17.0 - 37.2i)T^{2} \)
43 \( 1 + (-2.13 - 7.26i)T + (-36.1 + 23.2i)T^{2} \)
47 \( 1 + (9.49 + 5.47i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (6.19 + 7.88i)T + (-12.4 + 51.5i)T^{2} \)
59 \( 1 + (5.15 + 12.8i)T + (-42.7 + 40.7i)T^{2} \)
61 \( 1 + (6.34 - 6.05i)T + (2.90 - 60.9i)T^{2} \)
67 \( 1 + (0.169 + 0.120i)T + (21.9 + 63.3i)T^{2} \)
71 \( 1 + (-6.37 - 13.9i)T + (-46.4 + 53.6i)T^{2} \)
73 \( 1 + (-0.912 + 4.73i)T + (-67.7 - 27.1i)T^{2} \)
79 \( 1 + (10.1 - 12.8i)T + (-18.6 - 76.7i)T^{2} \)
83 \( 1 + (0.362 - 0.233i)T + (34.4 - 75.4i)T^{2} \)
89 \( 1 + (1.22 - 5.04i)T + (-79.1 - 40.7i)T^{2} \)
97 \( 1 + (2.39 + 1.54i)T + (40.2 + 88.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66967978505944260842311222395, −9.627511745822932300630523097095, −8.617882363085194551957151058557, −8.015138337886390089796081778594, −6.92841008065685662349536213774, −6.54893647866696139540155997551, −5.03126495942930552552674831672, −4.01341538671881087795668416757, −3.27491034345044448953437589339, −1.44846942108391499865197049462, 0.18639182611902857045746236527, 1.66658792881896480980391598486, 3.01283993838136534172135812593, 4.43289282140639136753075056111, 5.43294577611594198070651272900, 6.30573964309002634969613206088, 7.34621451839144431593800016955, 8.027198175875647476599766257377, 8.772363714627480256632716440620, 9.366695903814888574307677953733

Graph of the $Z$-function along the critical line