Properties

Label 2-966-1.1-c3-0-24
Degree $2$
Conductor $966$
Sign $1$
Analytic cond. $56.9958$
Root an. cond. $7.54955$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·3-s + 4·4-s − 6·5-s − 6·6-s + 7·7-s − 8·8-s + 9·9-s + 12·10-s + 48·11-s + 12·12-s + 38·13-s − 14·14-s − 18·15-s + 16·16-s + 114·17-s − 18·18-s + 56·19-s − 24·20-s + 21·21-s − 96·22-s − 23·23-s − 24·24-s − 89·25-s − 76·26-s + 27·27-s + 28·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.536·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.379·10-s + 1.31·11-s + 0.288·12-s + 0.810·13-s − 0.267·14-s − 0.309·15-s + 1/4·16-s + 1.62·17-s − 0.235·18-s + 0.676·19-s − 0.268·20-s + 0.218·21-s − 0.930·22-s − 0.208·23-s − 0.204·24-s − 0.711·25-s − 0.573·26-s + 0.192·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(56.9958\)
Root analytic conductor: \(7.54955\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: $\chi_{966} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.151945164\)
\(L(\frac12)\) \(\approx\) \(2.151945164\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p T \)
3 \( 1 - p T \)
7 \( 1 - p T \)
23 \( 1 + p T \)
good5 \( 1 + 6 T + p^{3} T^{2} \)
11 \( 1 - 48 T + p^{3} T^{2} \)
13 \( 1 - 38 T + p^{3} T^{2} \)
17 \( 1 - 114 T + p^{3} T^{2} \)
19 \( 1 - 56 T + p^{3} T^{2} \)
29 \( 1 + 162 T + p^{3} T^{2} \)
31 \( 1 + 16 T + p^{3} T^{2} \)
37 \( 1 + 46 T + p^{3} T^{2} \)
41 \( 1 + 342 T + p^{3} T^{2} \)
43 \( 1 - 248 T + p^{3} T^{2} \)
47 \( 1 + 24 T + p^{3} T^{2} \)
53 \( 1 - 426 T + p^{3} T^{2} \)
59 \( 1 + 852 T + p^{3} T^{2} \)
61 \( 1 - 338 T + p^{3} T^{2} \)
67 \( 1 - 488 T + p^{3} T^{2} \)
71 \( 1 - 336 T + p^{3} T^{2} \)
73 \( 1 - 362 T + p^{3} T^{2} \)
79 \( 1 - 1184 T + p^{3} T^{2} \)
83 \( 1 + 336 T + p^{3} T^{2} \)
89 \( 1 + 78 T + p^{3} T^{2} \)
97 \( 1 - 746 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.485093931194502059303510772883, −8.828815052651796549238247956986, −7.951253065652994457345263422807, −7.46627351171530597986557634906, −6.41745006592126048931574577775, −5.39963444467444650538077258482, −3.90148382635234953134373333084, −3.39062714554572102680928321995, −1.81266000355776379408262128622, −0.918270324329344189851945108512, 0.918270324329344189851945108512, 1.81266000355776379408262128622, 3.39062714554572102680928321995, 3.90148382635234953134373333084, 5.39963444467444650538077258482, 6.41745006592126048931574577775, 7.46627351171530597986557634906, 7.951253065652994457345263422807, 8.828815052651796549238247956986, 9.485093931194502059303510772883

Graph of the $Z$-function along the critical line