Properties

Label 2-966-1.1-c1-0-16
Degree $2$
Conductor $966$
Sign $1$
Analytic cond. $7.71354$
Root an. cond. $2.77732$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 2·5-s + 6-s + 7-s + 8-s + 9-s + 2·10-s + 12-s + 4.47·13-s + 14-s + 2·15-s + 16-s − 4.47·17-s + 18-s − 6.47·19-s + 2·20-s + 21-s − 23-s + 24-s − 25-s + 4.47·26-s + 27-s + 28-s − 2·29-s + 2·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.894·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 0.333·9-s + 0.632·10-s + 0.288·12-s + 1.24·13-s + 0.267·14-s + 0.516·15-s + 0.250·16-s − 1.08·17-s + 0.235·18-s − 1.48·19-s + 0.447·20-s + 0.218·21-s − 0.208·23-s + 0.204·24-s − 0.200·25-s + 0.877·26-s + 0.192·27-s + 0.188·28-s − 0.371·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 966 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(966\)    =    \(2 \cdot 3 \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(7.71354\)
Root analytic conductor: \(2.77732\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 966,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.554775313\)
\(L(\frac12)\) \(\approx\) \(3.554775313\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
7 \( 1 - T \)
23 \( 1 + T \)
good5 \( 1 - 2T + 5T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 4.47T + 13T^{2} \)
17 \( 1 + 4.47T + 17T^{2} \)
19 \( 1 + 6.47T + 19T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 6.47T + 31T^{2} \)
37 \( 1 + 10.9T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 12.9T + 43T^{2} \)
47 \( 1 - 6.47T + 47T^{2} \)
53 \( 1 - 6.94T + 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 + 12.9T + 67T^{2} \)
71 \( 1 + 12.9T + 71T^{2} \)
73 \( 1 + 2.94T + 73T^{2} \)
79 \( 1 - 12.9T + 79T^{2} \)
83 \( 1 + 6.47T + 83T^{2} \)
89 \( 1 + 17.4T + 89T^{2} \)
97 \( 1 - 8.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26124258674917254550487217205, −8.906248210020816594514505143451, −8.605673790472952672294072178775, −7.37588311853937904325025269121, −6.38385247650647585026092836777, −5.81434742854424470904257199085, −4.58425400030105124017947836583, −3.82024851165530888117705794237, −2.49878402826380940678274663916, −1.67695778472700422371539025888, 1.67695778472700422371539025888, 2.49878402826380940678274663916, 3.82024851165530888117705794237, 4.58425400030105124017947836583, 5.81434742854424470904257199085, 6.38385247650647585026092836777, 7.37588311853937904325025269121, 8.605673790472952672294072178775, 8.906248210020816594514505143451, 10.26124258674917254550487217205

Graph of the $Z$-function along the critical line