Properties

Label 2-960-5.4-c3-0-40
Degree $2$
Conductor $960$
Sign $0.983 + 0.178i$
Analytic cond. $56.6418$
Root an. cond. $7.52607$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3i·3-s + (−2 + 11i)5-s − 2i·7-s − 9·9-s + 70·11-s − 54i·13-s + (33 + 6i)15-s + 22i·17-s − 24·19-s − 6·21-s + 100i·23-s + (−117 − 44i)25-s + 27i·27-s + 216·29-s − 208·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + (−0.178 + 0.983i)5-s − 0.107i·7-s − 0.333·9-s + 1.91·11-s − 1.15i·13-s + (0.568 + 0.103i)15-s + 0.313i·17-s − 0.289·19-s − 0.0623·21-s + 0.906i·23-s + (−0.936 − 0.351i)25-s + 0.192i·27-s + 1.38·29-s − 1.20·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.983 + 0.178i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.983 + 0.178i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(960\)    =    \(2^{6} \cdot 3 \cdot 5\)
Sign: $0.983 + 0.178i$
Analytic conductor: \(56.6418\)
Root analytic conductor: \(7.52607\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{960} (769, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 960,\ (\ :3/2),\ 0.983 + 0.178i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.178599532\)
\(L(\frac12)\) \(\approx\) \(2.178599532\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3iT \)
5 \( 1 + (2 - 11i)T \)
good7 \( 1 + 2iT - 343T^{2} \)
11 \( 1 - 70T + 1.33e3T^{2} \)
13 \( 1 + 54iT - 2.19e3T^{2} \)
17 \( 1 - 22iT - 4.91e3T^{2} \)
19 \( 1 + 24T + 6.85e3T^{2} \)
23 \( 1 - 100iT - 1.21e4T^{2} \)
29 \( 1 - 216T + 2.43e4T^{2} \)
31 \( 1 + 208T + 2.97e4T^{2} \)
37 \( 1 + 254iT - 5.06e4T^{2} \)
41 \( 1 + 206T + 6.89e4T^{2} \)
43 \( 1 - 292iT - 7.95e4T^{2} \)
47 \( 1 + 320iT - 1.03e5T^{2} \)
53 \( 1 - 402iT - 1.48e5T^{2} \)
59 \( 1 - 370T + 2.05e5T^{2} \)
61 \( 1 - 550T + 2.26e5T^{2} \)
67 \( 1 + 728iT - 3.00e5T^{2} \)
71 \( 1 - 540T + 3.57e5T^{2} \)
73 \( 1 - 604iT - 3.89e5T^{2} \)
79 \( 1 - 792T + 4.93e5T^{2} \)
83 \( 1 - 404iT - 5.71e5T^{2} \)
89 \( 1 - 938T + 7.04e5T^{2} \)
97 \( 1 + 56iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.640015039089004751355671340319, −8.717425008929317773583590780597, −7.81333637005420609414859209230, −6.99164220618287742172170881065, −6.39808282576933830047452847566, −5.51420709992944018050773008002, −3.98150145691963405328867845134, −3.29874965429420689782219854862, −2.02981178325438252640846382049, −0.808528621866258996298362676715, 0.828121072329971548702486123571, 1.99198318130975708246336157194, 3.65898375533114537101263828948, 4.31465635229975468909707521738, 5.07533428766961604031997568931, 6.30600560368817961417891502801, 6.95119104737054049554836208855, 8.382032193974636905220141939523, 8.916077389744112995404585936578, 9.443027152839833840281802098872

Graph of the $Z$-function along the critical line