L(s) = 1 | − 3i·3-s + (−2 + 11i)5-s − 2i·7-s − 9·9-s + 70·11-s − 54i·13-s + (33 + 6i)15-s + 22i·17-s − 24·19-s − 6·21-s + 100i·23-s + (−117 − 44i)25-s + 27i·27-s + 216·29-s − 208·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (−0.178 + 0.983i)5-s − 0.107i·7-s − 0.333·9-s + 1.91·11-s − 1.15i·13-s + (0.568 + 0.103i)15-s + 0.313i·17-s − 0.289·19-s − 0.0623·21-s + 0.906i·23-s + (−0.936 − 0.351i)25-s + 0.192i·27-s + 1.38·29-s − 1.20·31-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.983+0.178i)Λ(4−s)
Λ(s)=(=(960s/2ΓC(s+3/2)L(s)(0.983+0.178i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.983+0.178i
|
Analytic conductor: |
56.6418 |
Root analytic conductor: |
7.52607 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(769,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :3/2), 0.983+0.178i)
|
Particular Values
L(2) |
≈ |
2.178599532 |
L(21) |
≈ |
2.178599532 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
| 5 | 1+(2−11i)T |
good | 7 | 1+2iT−343T2 |
| 11 | 1−70T+1.33e3T2 |
| 13 | 1+54iT−2.19e3T2 |
| 17 | 1−22iT−4.91e3T2 |
| 19 | 1+24T+6.85e3T2 |
| 23 | 1−100iT−1.21e4T2 |
| 29 | 1−216T+2.43e4T2 |
| 31 | 1+208T+2.97e4T2 |
| 37 | 1+254iT−5.06e4T2 |
| 41 | 1+206T+6.89e4T2 |
| 43 | 1−292iT−7.95e4T2 |
| 47 | 1+320iT−1.03e5T2 |
| 53 | 1−402iT−1.48e5T2 |
| 59 | 1−370T+2.05e5T2 |
| 61 | 1−550T+2.26e5T2 |
| 67 | 1+728iT−3.00e5T2 |
| 71 | 1−540T+3.57e5T2 |
| 73 | 1−604iT−3.89e5T2 |
| 79 | 1−792T+4.93e5T2 |
| 83 | 1−404iT−5.71e5T2 |
| 89 | 1−938T+7.04e5T2 |
| 97 | 1+56iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.640015039089004751355671340319, −8.717425008929317773583590780597, −7.81333637005420609414859209230, −6.99164220618287742172170881065, −6.39808282576933830047452847566, −5.51420709992944018050773008002, −3.98150145691963405328867845134, −3.29874965429420689782219854862, −2.02981178325438252640846382049, −0.808528621866258996298362676715,
0.828121072329971548702486123571, 1.99198318130975708246336157194, 3.65898375533114537101263828948, 4.31465635229975468909707521738, 5.07533428766961604031997568931, 6.30600560368817961417891502801, 6.95119104737054049554836208855, 8.382032193974636905220141939523, 8.916077389744112995404585936578, 9.443027152839833840281802098872