Properties

Label 2-960-15.14-c2-0-14
Degree $2$
Conductor $960$
Sign $-0.999 + 0.0169i$
Analytic cond. $26.1581$
Root an. cond. $5.11449$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.49 + 1.67i)3-s + (−4.19 − 2.71i)5-s + 12.7i·7-s + (3.41 − 8.32i)9-s + 12.6i·11-s + 7.44i·13-s + (14.9 − 0.254i)15-s + 14.0·17-s + 31.0·19-s + (−21.3 − 31.8i)21-s − 7.50·23-s + (10.2 + 22.7i)25-s + (5.40 + 26.4i)27-s + 15.7i·29-s − 20.4·31-s + ⋯
L(s)  = 1  + (−0.830 + 0.557i)3-s + (−0.839 − 0.542i)5-s + 1.82i·7-s + (0.379 − 0.925i)9-s + 1.14i·11-s + 0.572i·13-s + (0.999 − 0.0169i)15-s + 0.826·17-s + 1.63·19-s + (−1.01 − 1.51i)21-s − 0.326·23-s + (0.410 + 0.911i)25-s + (0.200 + 0.979i)27-s + 0.542i·29-s − 0.660·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0169i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.0169i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(960\)    =    \(2^{6} \cdot 3 \cdot 5\)
Sign: $-0.999 + 0.0169i$
Analytic conductor: \(26.1581\)
Root analytic conductor: \(5.11449\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{960} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 960,\ (\ :1),\ -0.999 + 0.0169i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.7706667049\)
\(L(\frac12)\) \(\approx\) \(0.7706667049\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (2.49 - 1.67i)T \)
5 \( 1 + (4.19 + 2.71i)T \)
good7 \( 1 - 12.7iT - 49T^{2} \)
11 \( 1 - 12.6iT - 121T^{2} \)
13 \( 1 - 7.44iT - 169T^{2} \)
17 \( 1 - 14.0T + 289T^{2} \)
19 \( 1 - 31.0T + 361T^{2} \)
23 \( 1 + 7.50T + 529T^{2} \)
29 \( 1 - 15.7iT - 841T^{2} \)
31 \( 1 + 20.4T + 961T^{2} \)
37 \( 1 - 12.9iT - 1.36e3T^{2} \)
41 \( 1 - 13.8iT - 1.68e3T^{2} \)
43 \( 1 + 30.0iT - 1.84e3T^{2} \)
47 \( 1 + 20.2T + 2.20e3T^{2} \)
53 \( 1 - 29.1T + 2.80e3T^{2} \)
59 \( 1 - 47.6iT - 3.48e3T^{2} \)
61 \( 1 + 43.0T + 3.72e3T^{2} \)
67 \( 1 + 0.630iT - 4.48e3T^{2} \)
71 \( 1 - 90.4iT - 5.04e3T^{2} \)
73 \( 1 - 46.2iT - 5.32e3T^{2} \)
79 \( 1 - 37.9T + 6.24e3T^{2} \)
83 \( 1 + 80.2T + 6.88e3T^{2} \)
89 \( 1 + 140. iT - 7.92e3T^{2} \)
97 \( 1 + 10.3iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09306893924507180526166193858, −9.392921919117501408663649066459, −8.834067058418733311569054849439, −7.72338558478013113330015925806, −6.82827261860928100793127695368, −5.55275996310836339844904357200, −5.21761619956032637740095868114, −4.20936253141280868689658956862, −3.06644621525417236869590044002, −1.48621821255930266497850030368, 0.34229547672049848689474564291, 1.10966194419499079426373158506, 3.17446160046833760357435911465, 3.89746425005017459398034601709, 5.07931160645533528088513621082, 6.07516522571598971589447793121, 7.00641212121533346387721491658, 7.69228647452757193836821093514, 8.020885602039194978008716923625, 9.718862783815320572275119594750

Graph of the $Z$-function along the critical line