Properties

Label 2-960-1.1-c3-0-20
Degree $2$
Conductor $960$
Sign $1$
Analytic cond. $56.6418$
Root an. cond. $7.52607$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5·5-s + 24·7-s + 9·9-s + 52·11-s − 22·13-s − 15·15-s − 14·17-s − 20·19-s + 72·21-s + 168·23-s + 25·25-s + 27·27-s − 230·29-s + 288·31-s + 156·33-s − 120·35-s + 34·37-s − 66·39-s + 122·41-s − 188·43-s − 45·45-s − 256·47-s + 233·49-s − 42·51-s + 338·53-s − 260·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1.29·7-s + 1/3·9-s + 1.42·11-s − 0.469·13-s − 0.258·15-s − 0.199·17-s − 0.241·19-s + 0.748·21-s + 1.52·23-s + 1/5·25-s + 0.192·27-s − 1.47·29-s + 1.66·31-s + 0.822·33-s − 0.579·35-s + 0.151·37-s − 0.270·39-s + 0.464·41-s − 0.666·43-s − 0.149·45-s − 0.794·47-s + 0.679·49-s − 0.115·51-s + 0.875·53-s − 0.637·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(960\)    =    \(2^{6} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(56.6418\)
Root analytic conductor: \(7.52607\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: $\chi_{960} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 960,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.171571282\)
\(L(\frac12)\) \(\approx\) \(3.171571282\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 + p T \)
good7 \( 1 - 24 T + p^{3} T^{2} \)
11 \( 1 - 52 T + p^{3} T^{2} \)
13 \( 1 + 22 T + p^{3} T^{2} \)
17 \( 1 + 14 T + p^{3} T^{2} \)
19 \( 1 + 20 T + p^{3} T^{2} \)
23 \( 1 - 168 T + p^{3} T^{2} \)
29 \( 1 + 230 T + p^{3} T^{2} \)
31 \( 1 - 288 T + p^{3} T^{2} \)
37 \( 1 - 34 T + p^{3} T^{2} \)
41 \( 1 - 122 T + p^{3} T^{2} \)
43 \( 1 + 188 T + p^{3} T^{2} \)
47 \( 1 + 256 T + p^{3} T^{2} \)
53 \( 1 - 338 T + p^{3} T^{2} \)
59 \( 1 - 100 T + p^{3} T^{2} \)
61 \( 1 + 742 T + p^{3} T^{2} \)
67 \( 1 + 84 T + p^{3} T^{2} \)
71 \( 1 - 328 T + p^{3} T^{2} \)
73 \( 1 + 38 T + p^{3} T^{2} \)
79 \( 1 - 240 T + p^{3} T^{2} \)
83 \( 1 - 1212 T + p^{3} T^{2} \)
89 \( 1 - 330 T + p^{3} T^{2} \)
97 \( 1 - 866 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.387661555738898610163233780109, −8.820123647689379176604482802558, −7.999164004168537860764871561007, −7.27454463745713766752152413468, −6.38860045795546712904334201281, −4.99094253748155141476995191110, −4.34808916776602349535040572019, −3.32855058654727074419398100209, −2.02463891749889732565192030789, −1.00415508661048391825579977482, 1.00415508661048391825579977482, 2.02463891749889732565192030789, 3.32855058654727074419398100209, 4.34808916776602349535040572019, 4.99094253748155141476995191110, 6.38860045795546712904334201281, 7.27454463745713766752152413468, 7.999164004168537860764871561007, 8.820123647689379176604482802558, 9.387661555738898610163233780109

Graph of the $Z$-function along the critical line