| L(s) = 1 | − 3·3-s + 5·5-s + 12·7-s + 9·9-s + 20·11-s + 58·13-s − 15·15-s − 70·17-s + 92·19-s − 36·21-s + 112·23-s + 25·25-s − 27·27-s − 66·29-s − 108·31-s − 60·33-s + 60·35-s + 58·37-s − 174·39-s + 66·41-s + 388·43-s + 45·45-s − 408·47-s − 199·49-s + 210·51-s − 474·53-s + 100·55-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 0.447·5-s + 0.647·7-s + 1/3·9-s + 0.548·11-s + 1.23·13-s − 0.258·15-s − 0.998·17-s + 1.11·19-s − 0.374·21-s + 1.01·23-s + 1/5·25-s − 0.192·27-s − 0.422·29-s − 0.625·31-s − 0.316·33-s + 0.289·35-s + 0.257·37-s − 0.714·39-s + 0.251·41-s + 1.37·43-s + 0.149·45-s − 1.26·47-s − 0.580·49-s + 0.576·51-s − 1.22·53-s + 0.245·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.317451911\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.317451911\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + p T \) |
| 5 | \( 1 - p T \) |
| good | 7 | \( 1 - 12 T + p^{3} T^{2} \) |
| 11 | \( 1 - 20 T + p^{3} T^{2} \) |
| 13 | \( 1 - 58 T + p^{3} T^{2} \) |
| 17 | \( 1 + 70 T + p^{3} T^{2} \) |
| 19 | \( 1 - 92 T + p^{3} T^{2} \) |
| 23 | \( 1 - 112 T + p^{3} T^{2} \) |
| 29 | \( 1 + 66 T + p^{3} T^{2} \) |
| 31 | \( 1 + 108 T + p^{3} T^{2} \) |
| 37 | \( 1 - 58 T + p^{3} T^{2} \) |
| 41 | \( 1 - 66 T + p^{3} T^{2} \) |
| 43 | \( 1 - 388 T + p^{3} T^{2} \) |
| 47 | \( 1 + 408 T + p^{3} T^{2} \) |
| 53 | \( 1 + 474 T + p^{3} T^{2} \) |
| 59 | \( 1 - 540 T + p^{3} T^{2} \) |
| 61 | \( 1 + 14 T + p^{3} T^{2} \) |
| 67 | \( 1 - 276 T + p^{3} T^{2} \) |
| 71 | \( 1 + 96 T + p^{3} T^{2} \) |
| 73 | \( 1 + 790 T + p^{3} T^{2} \) |
| 79 | \( 1 - 308 T + p^{3} T^{2} \) |
| 83 | \( 1 - 1036 T + p^{3} T^{2} \) |
| 89 | \( 1 - 1210 T + p^{3} T^{2} \) |
| 97 | \( 1 - 1426 T + p^{3} T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.515786360333114641593391342273, −8.975076269207034907168621386349, −7.958101740704132812859808881935, −6.95722468874907160616417143672, −6.18462626064890717976700260767, −5.33780327463543922083551689695, −4.45853825130413822924713809879, −3.34609338950883992597918870534, −1.84177879209153487157950824601, −0.903729983872970344276875757282,
0.903729983872970344276875757282, 1.84177879209153487157950824601, 3.34609338950883992597918870534, 4.45853825130413822924713809879, 5.33780327463543922083551689695, 6.18462626064890717976700260767, 6.95722468874907160616417143672, 7.958101740704132812859808881935, 8.975076269207034907168621386349, 9.515786360333114641593391342273