Properties

Label 2-960-1.1-c3-0-15
Degree $2$
Conductor $960$
Sign $1$
Analytic cond. $56.6418$
Root an. cond. $7.52607$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 5·5-s − 28·7-s + 9·9-s + 24·11-s + 70·13-s + 15·15-s + 102·17-s − 20·19-s − 84·21-s − 72·23-s + 25·25-s + 27·27-s − 306·29-s − 136·31-s + 72·33-s − 140·35-s + 214·37-s + 210·39-s − 150·41-s + 292·43-s + 45·45-s − 72·47-s + 441·49-s + 306·51-s + 414·53-s + 120·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.51·7-s + 1/3·9-s + 0.657·11-s + 1.49·13-s + 0.258·15-s + 1.45·17-s − 0.241·19-s − 0.872·21-s − 0.652·23-s + 1/5·25-s + 0.192·27-s − 1.95·29-s − 0.787·31-s + 0.379·33-s − 0.676·35-s + 0.950·37-s + 0.862·39-s − 0.571·41-s + 1.03·43-s + 0.149·45-s − 0.223·47-s + 9/7·49-s + 0.840·51-s + 1.07·53-s + 0.294·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(960\)    =    \(2^{6} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(56.6418\)
Root analytic conductor: \(7.52607\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 960,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.687049504\)
\(L(\frac12)\) \(\approx\) \(2.687049504\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 - p T \)
good7 \( 1 + 4 p T + p^{3} T^{2} \)
11 \( 1 - 24 T + p^{3} T^{2} \)
13 \( 1 - 70 T + p^{3} T^{2} \)
17 \( 1 - 6 p T + p^{3} T^{2} \)
19 \( 1 + 20 T + p^{3} T^{2} \)
23 \( 1 + 72 T + p^{3} T^{2} \)
29 \( 1 + 306 T + p^{3} T^{2} \)
31 \( 1 + 136 T + p^{3} T^{2} \)
37 \( 1 - 214 T + p^{3} T^{2} \)
41 \( 1 + 150 T + p^{3} T^{2} \)
43 \( 1 - 292 T + p^{3} T^{2} \)
47 \( 1 + 72 T + p^{3} T^{2} \)
53 \( 1 - 414 T + p^{3} T^{2} \)
59 \( 1 - 744 T + p^{3} T^{2} \)
61 \( 1 - 418 T + p^{3} T^{2} \)
67 \( 1 + 188 T + p^{3} T^{2} \)
71 \( 1 - 480 T + p^{3} T^{2} \)
73 \( 1 - 434 T + p^{3} T^{2} \)
79 \( 1 - 1352 T + p^{3} T^{2} \)
83 \( 1 - 612 T + p^{3} T^{2} \)
89 \( 1 + 30 T + p^{3} T^{2} \)
97 \( 1 + 286 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.527449188496564874647540494467, −9.041433134115375225506785035241, −8.037772773440825822037446396549, −7.04485613865871259914851622575, −6.17181619306944855329262544002, −5.59773583117081352948735848250, −3.70503380759648724341808334288, −3.59893736256981220306004362482, −2.15820728565203900782926144117, −0.878897593123218354206422579413, 0.878897593123218354206422579413, 2.15820728565203900782926144117, 3.59893736256981220306004362482, 3.70503380759648724341808334288, 5.59773583117081352948735848250, 6.17181619306944855329262544002, 7.04485613865871259914851622575, 8.037772773440825822037446396549, 9.041433134115375225506785035241, 9.527449188496564874647540494467

Graph of the $Z$-function along the critical line