Properties

Label 2-96-3.2-c2-0-3
Degree $2$
Conductor $96$
Sign $0.816 - 0.577i$
Analytic cond. $2.61581$
Root an. cond. $1.61734$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.73 + 2.44i)3-s − 2.82i·5-s + 10.3·7-s + (−2.99 + 8.48i)9-s + 14.6i·11-s − 6·13-s + (6.92 − 4.89i)15-s − 22.6i·17-s − 10.3·19-s + (18 + 25.4i)21-s − 29.3i·23-s + 17·25-s + (−25.9 + 7.34i)27-s − 31.1i·29-s − 31.1·31-s + ⋯
L(s)  = 1  + (0.577 + 0.816i)3-s − 0.565i·5-s + 1.48·7-s + (−0.333 + 0.942i)9-s + 1.33i·11-s − 0.461·13-s + (0.461 − 0.326i)15-s − 1.33i·17-s − 0.546·19-s + (0.857 + 1.21i)21-s − 1.27i·23-s + 0.680·25-s + (−0.962 + 0.272i)27-s − 1.07i·29-s − 1.00·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 96 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 96 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(96\)    =    \(2^{5} \cdot 3\)
Sign: $0.816 - 0.577i$
Analytic conductor: \(2.61581\)
Root analytic conductor: \(1.61734\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{96} (65, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 96,\ (\ :1),\ 0.816 - 0.577i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.59317 + 0.506370i\)
\(L(\frac12)\) \(\approx\) \(1.59317 + 0.506370i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.73 - 2.44i)T \)
good5 \( 1 + 2.82iT - 25T^{2} \)
7 \( 1 - 10.3T + 49T^{2} \)
11 \( 1 - 14.6iT - 121T^{2} \)
13 \( 1 + 6T + 169T^{2} \)
17 \( 1 + 22.6iT - 289T^{2} \)
19 \( 1 + 10.3T + 361T^{2} \)
23 \( 1 + 29.3iT - 529T^{2} \)
29 \( 1 + 31.1iT - 841T^{2} \)
31 \( 1 + 31.1T + 961T^{2} \)
37 \( 1 + 38T + 1.36e3T^{2} \)
41 \( 1 - 5.65iT - 1.68e3T^{2} \)
43 \( 1 + 10.3T + 1.84e3T^{2} \)
47 \( 1 - 58.7iT - 2.20e3T^{2} \)
53 \( 1 + 14.1iT - 2.80e3T^{2} \)
59 \( 1 - 14.6iT - 3.48e3T^{2} \)
61 \( 1 + 22T + 3.72e3T^{2} \)
67 \( 1 - 114.T + 4.48e3T^{2} \)
71 \( 1 - 29.3iT - 5.04e3T^{2} \)
73 \( 1 + 30T + 5.32e3T^{2} \)
79 \( 1 + 31.1T + 6.24e3T^{2} \)
83 \( 1 + 73.4iT - 6.88e3T^{2} \)
89 \( 1 - 5.65iT - 7.92e3T^{2} \)
97 \( 1 - 90T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.20835056765261540348153957951, −12.77274894796780927506349148343, −11.63029659353497320752910082357, −10.50835739070008868032694979114, −9.398825701952516204538508999135, −8.409685389483895331322001040769, −7.35533197862825724121992851566, −5.00158943917870760443133334421, −4.49778979338763824838428107830, −2.22366461339349790618826363007, 1.73105121822732431778926147941, 3.49732992569682746460584074973, 5.53115874669343422208814807699, 6.95910415703906066547271563213, 8.094474269897240955774009407728, 8.812947937059081909045973510623, 10.66839428990328392981943756966, 11.44611411471106840571153656298, 12.64872172252632554399853939551, 13.81776469499798066423443491148

Graph of the $Z$-function along the critical line