Properties

Label 2-95e2-1.1-c1-0-94
Degree $2$
Conductor $9025$
Sign $1$
Analytic cond. $72.0649$
Root an. cond. $8.48910$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s − 4·7-s − 3·9-s − 11-s − 2·13-s − 8·14-s − 4·16-s − 2·17-s − 6·18-s − 2·22-s + 6·23-s − 4·26-s − 8·28-s + 9·29-s − 7·31-s − 8·32-s − 4·34-s − 6·36-s + 2·37-s + 2·41-s + 2·43-s − 2·44-s + 12·46-s + 6·47-s + 9·49-s − 4·52-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s − 1.51·7-s − 9-s − 0.301·11-s − 0.554·13-s − 2.13·14-s − 16-s − 0.485·17-s − 1.41·18-s − 0.426·22-s + 1.25·23-s − 0.784·26-s − 1.51·28-s + 1.67·29-s − 1.25·31-s − 1.41·32-s − 0.685·34-s − 36-s + 0.328·37-s + 0.312·41-s + 0.304·43-s − 0.301·44-s + 1.76·46-s + 0.875·47-s + 9/7·49-s − 0.554·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9025\)    =    \(5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(72.0649\)
Root analytic conductor: \(8.48910\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9025,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.105016517\)
\(L(\frac12)\) \(\approx\) \(2.105016517\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 \)
good2 \( 1 - p T + p T^{2} \)
3 \( 1 + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 + 7 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 9 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 11 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.34444403405367046839408768692, −6.82504700909223389822141819119, −6.17427872773578038096006877803, −5.64725602868882740424934611950, −4.98882044221344099042286742266, −4.24268102781465038145714028719, −3.39219390130035433443558897600, −2.87385836530491516372746645265, −2.37402654009108351731947703058, −0.52108213209354670262371061679, 0.52108213209354670262371061679, 2.37402654009108351731947703058, 2.87385836530491516372746645265, 3.39219390130035433443558897600, 4.24268102781465038145714028719, 4.98882044221344099042286742266, 5.64725602868882740424934611950, 6.17427872773578038096006877803, 6.82504700909223389822141819119, 7.34444403405367046839408768692

Graph of the $Z$-function along the critical line