Properties

Label 2-95e2-1.1-c1-0-90
Degree $2$
Conductor $9025$
Sign $1$
Analytic cond. $72.0649$
Root an. cond. $8.48910$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.75·2-s − 0.0856·3-s + 1.08·4-s + 0.150·6-s + 1.86·7-s + 1.60·8-s − 2.99·9-s − 1.22·11-s − 0.0929·12-s + 2.40·13-s − 3.26·14-s − 4.99·16-s − 6.05·17-s + 5.25·18-s − 0.159·21-s + 2.15·22-s + 7.20·23-s − 0.137·24-s − 4.22·26-s + 0.513·27-s + 2.02·28-s + 1.28·29-s − 5.87·31-s + 5.55·32-s + 0.104·33-s + 10.6·34-s − 3.24·36-s + ⋯
L(s)  = 1  − 1.24·2-s − 0.0494·3-s + 0.542·4-s + 0.0614·6-s + 0.703·7-s + 0.567·8-s − 0.997·9-s − 0.369·11-s − 0.0268·12-s + 0.667·13-s − 0.873·14-s − 1.24·16-s − 1.46·17-s + 1.23·18-s − 0.0347·21-s + 0.458·22-s + 1.50·23-s − 0.0280·24-s − 0.829·26-s + 0.0987·27-s + 0.381·28-s + 0.238·29-s − 1.05·31-s + 0.982·32-s + 0.0182·33-s + 1.82·34-s − 0.541·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9025\)    =    \(5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(72.0649\)
Root analytic conductor: \(8.48910\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9025,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6944774858\)
\(L(\frac12)\) \(\approx\) \(0.6944774858\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 \)
good2 \( 1 + 1.75T + 2T^{2} \)
3 \( 1 + 0.0856T + 3T^{2} \)
7 \( 1 - 1.86T + 7T^{2} \)
11 \( 1 + 1.22T + 11T^{2} \)
13 \( 1 - 2.40T + 13T^{2} \)
17 \( 1 + 6.05T + 17T^{2} \)
23 \( 1 - 7.20T + 23T^{2} \)
29 \( 1 - 1.28T + 29T^{2} \)
31 \( 1 + 5.87T + 31T^{2} \)
37 \( 1 - 1.59T + 37T^{2} \)
41 \( 1 + 9.72T + 41T^{2} \)
43 \( 1 - 0.697T + 43T^{2} \)
47 \( 1 - 11.6T + 47T^{2} \)
53 \( 1 + 10.2T + 53T^{2} \)
59 \( 1 - 9.40T + 59T^{2} \)
61 \( 1 - 3.73T + 61T^{2} \)
67 \( 1 + 7.41T + 67T^{2} \)
71 \( 1 + 8.51T + 71T^{2} \)
73 \( 1 - 6.21T + 73T^{2} \)
79 \( 1 + 7.39T + 79T^{2} \)
83 \( 1 + 0.0135T + 83T^{2} \)
89 \( 1 + 1.25T + 89T^{2} \)
97 \( 1 + 7.97T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.981970115359776286210886323582, −7.19087670316789860539766030506, −6.65047851119974744743629144764, −5.70671021475811608179030991347, −4.98187715551303682203450274783, −4.35775732432172182868972609915, −3.26826308874573911756671857068, −2.34108254138263647883533098843, −1.55240966540368217942159873172, −0.50104893645986292055784407962, 0.50104893645986292055784407962, 1.55240966540368217942159873172, 2.34108254138263647883533098843, 3.26826308874573911756671857068, 4.35775732432172182868972609915, 4.98187715551303682203450274783, 5.70671021475811608179030991347, 6.65047851119974744743629144764, 7.19087670316789860539766030506, 7.981970115359776286210886323582

Graph of the $Z$-function along the critical line