L(s) = 1 | + 2·2-s + 2·4-s + 4·7-s − 3·9-s − 11-s − 2·13-s + 8·14-s − 4·16-s + 2·17-s − 6·18-s − 2·22-s − 6·23-s − 4·26-s + 8·28-s − 9·29-s + 7·31-s − 8·32-s + 4·34-s − 6·36-s + 2·37-s − 2·41-s − 2·43-s − 2·44-s − 12·46-s − 6·47-s + 9·49-s − 4·52-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s + 1.51·7-s − 9-s − 0.301·11-s − 0.554·13-s + 2.13·14-s − 16-s + 0.485·17-s − 1.41·18-s − 0.426·22-s − 1.25·23-s − 0.784·26-s + 1.51·28-s − 1.67·29-s + 1.25·31-s − 1.41·32-s + 0.685·34-s − 36-s + 0.328·37-s − 0.312·41-s − 0.304·43-s − 0.301·44-s − 1.76·46-s − 0.875·47-s + 9/7·49-s − 0.554·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 - p T + p T^{2} \) |
| 3 | \( 1 + p T^{2} \) |
| 7 | \( 1 - 4 T + p T^{2} \) |
| 11 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 + 9 T + p T^{2} \) |
| 31 | \( 1 - 7 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 + 2 T + p T^{2} \) |
| 47 | \( 1 + 6 T + p T^{2} \) |
| 53 | \( 1 - 4 T + p T^{2} \) |
| 59 | \( 1 + 9 T + p T^{2} \) |
| 61 | \( 1 + 7 T + p T^{2} \) |
| 67 | \( 1 + 10 T + p T^{2} \) |
| 71 | \( 1 + T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 + T + p T^{2} \) |
| 83 | \( 1 - 6 T + p T^{2} \) |
| 89 | \( 1 - 11 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.49108759469514968488634151108, −6.32140657880002311696717149039, −5.83425220431077261197640060450, −5.16878200823707144795848625245, −4.73393782803949320805165463406, −4.00846770547569728687671158073, −3.16443892797854562205339038031, −2.41426315202176417098684876832, −1.64347015071941685368598744615, 0,
1.64347015071941685368598744615, 2.41426315202176417098684876832, 3.16443892797854562205339038031, 4.00846770547569728687671158073, 4.73393782803949320805165463406, 5.16878200823707144795848625245, 5.83425220431077261197640060450, 6.32140657880002311696717149039, 7.49108759469514968488634151108