L(s) = 1 | + 2.75·2-s + 1.49·3-s + 5.60·4-s + 4.11·6-s + 2.84·7-s + 9.94·8-s − 0.774·9-s − 0.864·11-s + 8.36·12-s + 0.643·13-s + 7.85·14-s + 16.2·16-s − 3.74·17-s − 2.13·18-s + 4.24·21-s − 2.38·22-s − 0.417·23-s + 14.8·24-s + 1.77·26-s − 5.63·27-s + 15.9·28-s + 9.70·29-s − 4.93·31-s + 24.8·32-s − 1.29·33-s − 10.3·34-s − 4.34·36-s + ⋯ |
L(s) = 1 | + 1.95·2-s + 0.861·3-s + 2.80·4-s + 1.67·6-s + 1.07·7-s + 3.51·8-s − 0.258·9-s − 0.260·11-s + 2.41·12-s + 0.178·13-s + 2.09·14-s + 4.05·16-s − 0.907·17-s − 0.503·18-s + 0.927·21-s − 0.508·22-s − 0.0870·23-s + 3.02·24-s + 0.347·26-s − 1.08·27-s + 3.01·28-s + 1.80·29-s − 0.886·31-s + 4.39·32-s − 0.224·33-s − 1.76·34-s − 0.723·36-s + ⋯ |
Λ(s)=(=(9025s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9025s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
12.31385495 |
L(21) |
≈ |
12.31385495 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1−2.75T+2T2 |
| 3 | 1−1.49T+3T2 |
| 7 | 1−2.84T+7T2 |
| 11 | 1+0.864T+11T2 |
| 13 | 1−0.643T+13T2 |
| 17 | 1+3.74T+17T2 |
| 23 | 1+0.417T+23T2 |
| 29 | 1−9.70T+29T2 |
| 31 | 1+4.93T+31T2 |
| 37 | 1−6.36T+37T2 |
| 41 | 1−4.01T+41T2 |
| 43 | 1−2.05T+43T2 |
| 47 | 1−3.95T+47T2 |
| 53 | 1+10.9T+53T2 |
| 59 | 1+2.45T+59T2 |
| 61 | 1−6.33T+61T2 |
| 67 | 1+2.53T+67T2 |
| 71 | 1−1.78T+71T2 |
| 73 | 1−7.13T+73T2 |
| 79 | 1+1.82T+79T2 |
| 83 | 1−7.43T+83T2 |
| 89 | 1+4.44T+89T2 |
| 97 | 1+10.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.73286900395089884205998342392, −6.84976634337694986141746734805, −6.19878433548996243280833430672, −5.49619519517840036477797165948, −4.79646293763180028201366383522, −4.29229782423517606501374844596, −3.56275660414593274498909694785, −2.68683150592785329526508798278, −2.31109042727214224982455867084, −1.37072949960239552813855742296,
1.37072949960239552813855742296, 2.31109042727214224982455867084, 2.68683150592785329526508798278, 3.56275660414593274498909694785, 4.29229782423517606501374844596, 4.79646293763180028201366383522, 5.49619519517840036477797165948, 6.19878433548996243280833430672, 6.84976634337694986141746734805, 7.73286900395089884205998342392