Properties

Label 2-95e2-1.1-c1-0-401
Degree $2$
Conductor $9025$
Sign $-1$
Analytic cond. $72.0649$
Root an. cond. $8.48910$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.65·2-s + 2.37·3-s + 0.726·4-s − 3.92·6-s + 0.377·7-s + 2.10·8-s + 2.65·9-s − 1.37·11-s + 1.72·12-s + 2.82·13-s − 0.622·14-s − 4.92·16-s − 6.37·17-s − 4.37·18-s + 0.896·21-s + 2.27·22-s − 6.19·23-s + 4.99·24-s − 4.65·26-s − 0.829·27-s + 0.273·28-s + 3.37·29-s − 2.48·31-s + 3.92·32-s − 3.27·33-s + 10.5·34-s + 1.92·36-s + ⋯
L(s)  = 1  − 1.16·2-s + 1.37·3-s + 0.363·4-s − 1.60·6-s + 0.142·7-s + 0.743·8-s + 0.883·9-s − 0.415·11-s + 0.498·12-s + 0.782·13-s − 0.166·14-s − 1.23·16-s − 1.54·17-s − 1.03·18-s + 0.195·21-s + 0.484·22-s − 1.29·23-s + 1.02·24-s − 0.913·26-s − 0.159·27-s + 0.0517·28-s + 0.627·29-s − 0.445·31-s + 0.693·32-s − 0.569·33-s + 1.80·34-s + 0.320·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9025\)    =    \(5^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(72.0649\)
Root analytic conductor: \(8.48910\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9025,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 \)
good2 \( 1 + 1.65T + 2T^{2} \)
3 \( 1 - 2.37T + 3T^{2} \)
7 \( 1 - 0.377T + 7T^{2} \)
11 \( 1 + 1.37T + 11T^{2} \)
13 \( 1 - 2.82T + 13T^{2} \)
17 \( 1 + 6.37T + 17T^{2} \)
23 \( 1 + 6.19T + 23T^{2} \)
29 \( 1 - 3.37T + 29T^{2} \)
31 \( 1 + 2.48T + 31T^{2} \)
37 \( 1 - 5.58T + 37T^{2} \)
41 \( 1 + 8.50T + 41T^{2} \)
43 \( 1 - 12.1T + 43T^{2} \)
47 \( 1 - 6.87T + 47T^{2} \)
53 \( 1 - 11.5T + 53T^{2} \)
59 \( 1 + 6.05T + 59T^{2} \)
61 \( 1 - 5.02T + 61T^{2} \)
67 \( 1 - 3.22T + 67T^{2} \)
71 \( 1 - 2.30T + 71T^{2} \)
73 \( 1 - 3.19T + 73T^{2} \)
79 \( 1 - 6.71T + 79T^{2} \)
83 \( 1 + 18.2T + 83T^{2} \)
89 \( 1 + 1.50T + 89T^{2} \)
97 \( 1 + 11.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76430112430987670765885086236, −7.05626848082661800642428140007, −6.31298672222544791922792500939, −5.32101669702446436867846073361, −4.19688507188781376876827279335, −3.95198201199874126923237961211, −2.66880575040094026851613959156, −2.19202879052080751066400050014, −1.28805309762109242467223706384, 0, 1.28805309762109242467223706384, 2.19202879052080751066400050014, 2.66880575040094026851613959156, 3.95198201199874126923237961211, 4.19688507188781376876827279335, 5.32101669702446436867846073361, 6.31298672222544791922792500939, 7.05626848082661800642428140007, 7.76430112430987670765885086236

Graph of the $Z$-function along the critical line