Properties

Label 2-95e2-1.1-c1-0-331
Degree $2$
Conductor $9025$
Sign $-1$
Analytic cond. $72.0649$
Root an. cond. $8.48910$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.44·2-s − 2.24·3-s + 0.0881·4-s + 3.24·6-s + 1.35·7-s + 2.76·8-s + 2.04·9-s + 4.85·11-s − 0.198·12-s − 0.198·13-s − 1.96·14-s − 4.16·16-s − 1.13·17-s − 2.96·18-s − 3.04·21-s − 7.00·22-s + 2.55·23-s − 6.20·24-s + 0.286·26-s + 2.13·27-s + 0.119·28-s + 10.2·29-s − 2.51·31-s + 0.498·32-s − 10.8·33-s + 1.64·34-s + 0.180·36-s + ⋯
L(s)  = 1  − 1.02·2-s − 1.29·3-s + 0.0440·4-s + 1.32·6-s + 0.512·7-s + 0.976·8-s + 0.682·9-s + 1.46·11-s − 0.0571·12-s − 0.0549·13-s − 0.524·14-s − 1.04·16-s − 0.275·17-s − 0.697·18-s − 0.665·21-s − 1.49·22-s + 0.532·23-s − 1.26·24-s + 0.0561·26-s + 0.411·27-s + 0.0226·28-s + 1.90·29-s − 0.451·31-s + 0.0880·32-s − 1.89·33-s + 0.281·34-s + 0.0301·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9025\)    =    \(5^{2} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(72.0649\)
Root analytic conductor: \(8.48910\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9025,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 \)
good2 \( 1 + 1.44T + 2T^{2} \)
3 \( 1 + 2.24T + 3T^{2} \)
7 \( 1 - 1.35T + 7T^{2} \)
11 \( 1 - 4.85T + 11T^{2} \)
13 \( 1 + 0.198T + 13T^{2} \)
17 \( 1 + 1.13T + 17T^{2} \)
23 \( 1 - 2.55T + 23T^{2} \)
29 \( 1 - 10.2T + 29T^{2} \)
31 \( 1 + 2.51T + 31T^{2} \)
37 \( 1 - 0.137T + 37T^{2} \)
41 \( 1 - 11.7T + 41T^{2} \)
43 \( 1 + 7.59T + 43T^{2} \)
47 \( 1 - 2.69T + 47T^{2} \)
53 \( 1 + 12.8T + 53T^{2} \)
59 \( 1 + 5.82T + 59T^{2} \)
61 \( 1 + 7.58T + 61T^{2} \)
67 \( 1 + 8.01T + 67T^{2} \)
71 \( 1 - 8.82T + 71T^{2} \)
73 \( 1 + 11.9T + 73T^{2} \)
79 \( 1 + 10.7T + 79T^{2} \)
83 \( 1 - 3.77T + 83T^{2} \)
89 \( 1 + 9.36T + 89T^{2} \)
97 \( 1 + 0.198T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.44068652871918841982741076179, −6.59492065411041442655370668358, −6.30903906353832356141842273313, −5.31030193991443342380311959236, −4.60405201738752409836948879709, −4.22802714288061466053699916349, −2.94046110405966203564140964613, −1.54700151845031114436190290894, −1.08435945544120408440375762273, 0, 1.08435945544120408440375762273, 1.54700151845031114436190290894, 2.94046110405966203564140964613, 4.22802714288061466053699916349, 4.60405201738752409836948879709, 5.31030193991443342380311959236, 6.30903906353832356141842273313, 6.59492065411041442655370668358, 7.44068652871918841982741076179

Graph of the $Z$-function along the critical line