Properties

Label 2-95e2-1.1-c1-0-285
Degree $2$
Conductor $9025$
Sign $1$
Analytic cond. $72.0649$
Root an. cond. $8.48910$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.13·2-s + 1.70·3-s − 0.703·4-s + 1.93·6-s + 4.75·7-s − 3.07·8-s − 0.0975·9-s + 3.46·11-s − 1.19·12-s − 1.17·13-s + 5.41·14-s − 2.09·16-s + 6.20·17-s − 0.111·18-s + 8.10·21-s + 3.93·22-s − 5.05·23-s − 5.24·24-s − 1.33·26-s − 5.27·27-s − 3.34·28-s − 1.61·29-s + 7.49·31-s + 3.76·32-s + 5.89·33-s + 7.06·34-s + 0.0686·36-s + ⋯
L(s)  = 1  + 0.805·2-s + 0.983·3-s − 0.351·4-s + 0.791·6-s + 1.79·7-s − 1.08·8-s − 0.0325·9-s + 1.04·11-s − 0.346·12-s − 0.324·13-s + 1.44·14-s − 0.524·16-s + 1.50·17-s − 0.0261·18-s + 1.76·21-s + 0.839·22-s − 1.05·23-s − 1.07·24-s − 0.261·26-s − 1.01·27-s − 0.632·28-s − 0.299·29-s + 1.34·31-s + 0.666·32-s + 1.02·33-s + 1.21·34-s + 0.0114·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9025\)    =    \(5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(72.0649\)
Root analytic conductor: \(8.48910\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9025,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.116169034\)
\(L(\frac12)\) \(\approx\) \(5.116169034\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 \)
good2 \( 1 - 1.13T + 2T^{2} \)
3 \( 1 - 1.70T + 3T^{2} \)
7 \( 1 - 4.75T + 7T^{2} \)
11 \( 1 - 3.46T + 11T^{2} \)
13 \( 1 + 1.17T + 13T^{2} \)
17 \( 1 - 6.20T + 17T^{2} \)
23 \( 1 + 5.05T + 23T^{2} \)
29 \( 1 + 1.61T + 29T^{2} \)
31 \( 1 - 7.49T + 31T^{2} \)
37 \( 1 + 5.98T + 37T^{2} \)
41 \( 1 - 5.43T + 41T^{2} \)
43 \( 1 - 10.0T + 43T^{2} \)
47 \( 1 - 8.06T + 47T^{2} \)
53 \( 1 + 6.68T + 53T^{2} \)
59 \( 1 + 2.17T + 59T^{2} \)
61 \( 1 - 6.20T + 61T^{2} \)
67 \( 1 + 5.62T + 67T^{2} \)
71 \( 1 + 2.72T + 71T^{2} \)
73 \( 1 + 3.15T + 73T^{2} \)
79 \( 1 + 12.0T + 79T^{2} \)
83 \( 1 - 8.24T + 83T^{2} \)
89 \( 1 + 8.83T + 89T^{2} \)
97 \( 1 - 0.707T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79251289978648504450796652040, −7.31348176592202598446114263406, −5.98021717552824757583605479859, −5.67337865594506459324527906157, −4.74910989754016907291727589216, −4.22783890749506324098309548139, −3.61166135159029133980448290047, −2.77501819792343095068304503289, −1.93294947113707606050709714988, −0.980430970744608418166054487352, 0.980430970744608418166054487352, 1.93294947113707606050709714988, 2.77501819792343095068304503289, 3.61166135159029133980448290047, 4.22783890749506324098309548139, 4.74910989754016907291727589216, 5.67337865594506459324527906157, 5.98021717552824757583605479859, 7.31348176592202598446114263406, 7.79251289978648504450796652040

Graph of the $Z$-function along the critical line