L(s) = 1 | + 1.13·2-s + 1.70·3-s − 0.703·4-s + 1.93·6-s + 4.75·7-s − 3.07·8-s − 0.0975·9-s + 3.46·11-s − 1.19·12-s − 1.17·13-s + 5.41·14-s − 2.09·16-s + 6.20·17-s − 0.111·18-s + 8.10·21-s + 3.93·22-s − 5.05·23-s − 5.24·24-s − 1.33·26-s − 5.27·27-s − 3.34·28-s − 1.61·29-s + 7.49·31-s + 3.76·32-s + 5.89·33-s + 7.06·34-s + 0.0686·36-s + ⋯ |
L(s) = 1 | + 0.805·2-s + 0.983·3-s − 0.351·4-s + 0.791·6-s + 1.79·7-s − 1.08·8-s − 0.0325·9-s + 1.04·11-s − 0.346·12-s − 0.324·13-s + 1.44·14-s − 0.524·16-s + 1.50·17-s − 0.0261·18-s + 1.76·21-s + 0.839·22-s − 1.05·23-s − 1.07·24-s − 0.261·26-s − 1.01·27-s − 0.632·28-s − 0.299·29-s + 1.34·31-s + 0.666·32-s + 1.02·33-s + 1.21·34-s + 0.0114·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.116169034\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.116169034\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 - 1.13T + 2T^{2} \) |
| 3 | \( 1 - 1.70T + 3T^{2} \) |
| 7 | \( 1 - 4.75T + 7T^{2} \) |
| 11 | \( 1 - 3.46T + 11T^{2} \) |
| 13 | \( 1 + 1.17T + 13T^{2} \) |
| 17 | \( 1 - 6.20T + 17T^{2} \) |
| 23 | \( 1 + 5.05T + 23T^{2} \) |
| 29 | \( 1 + 1.61T + 29T^{2} \) |
| 31 | \( 1 - 7.49T + 31T^{2} \) |
| 37 | \( 1 + 5.98T + 37T^{2} \) |
| 41 | \( 1 - 5.43T + 41T^{2} \) |
| 43 | \( 1 - 10.0T + 43T^{2} \) |
| 47 | \( 1 - 8.06T + 47T^{2} \) |
| 53 | \( 1 + 6.68T + 53T^{2} \) |
| 59 | \( 1 + 2.17T + 59T^{2} \) |
| 61 | \( 1 - 6.20T + 61T^{2} \) |
| 67 | \( 1 + 5.62T + 67T^{2} \) |
| 71 | \( 1 + 2.72T + 71T^{2} \) |
| 73 | \( 1 + 3.15T + 73T^{2} \) |
| 79 | \( 1 + 12.0T + 79T^{2} \) |
| 83 | \( 1 - 8.24T + 83T^{2} \) |
| 89 | \( 1 + 8.83T + 89T^{2} \) |
| 97 | \( 1 - 0.707T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.79251289978648504450796652040, −7.31348176592202598446114263406, −5.98021717552824757583605479859, −5.67337865594506459324527906157, −4.74910989754016907291727589216, −4.22783890749506324098309548139, −3.61166135159029133980448290047, −2.77501819792343095068304503289, −1.93294947113707606050709714988, −0.980430970744608418166054487352,
0.980430970744608418166054487352, 1.93294947113707606050709714988, 2.77501819792343095068304503289, 3.61166135159029133980448290047, 4.22783890749506324098309548139, 4.74910989754016907291727589216, 5.67337865594506459324527906157, 5.98021717552824757583605479859, 7.31348176592202598446114263406, 7.79251289978648504450796652040