Properties

Label 2-95e2-1.1-c1-0-275
Degree $2$
Conductor $9025$
Sign $1$
Analytic cond. $72.0649$
Root an. cond. $8.48910$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.43·2-s − 2.94·3-s + 3.94·4-s − 7.18·6-s + 3.82·7-s + 4.74·8-s + 5.67·9-s − 2.12·11-s − 11.6·12-s + 3.65·13-s + 9.31·14-s + 3.67·16-s + 3.04·17-s + 13.8·18-s − 11.2·21-s − 5.18·22-s + 4.81·23-s − 13.9·24-s + 8.91·26-s − 7.87·27-s + 15.0·28-s + 6.03·29-s + 3.57·31-s − 0.526·32-s + 6.25·33-s + 7.41·34-s + 22.3·36-s + ⋯
L(s)  = 1  + 1.72·2-s − 1.70·3-s + 1.97·4-s − 2.93·6-s + 1.44·7-s + 1.67·8-s + 1.89·9-s − 0.640·11-s − 3.35·12-s + 1.01·13-s + 2.48·14-s + 0.918·16-s + 0.737·17-s + 3.26·18-s − 2.45·21-s − 1.10·22-s + 1.00·23-s − 2.85·24-s + 1.74·26-s − 1.51·27-s + 2.84·28-s + 1.12·29-s + 0.641·31-s − 0.0931·32-s + 1.08·33-s + 1.27·34-s + 3.73·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9025\)    =    \(5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(72.0649\)
Root analytic conductor: \(8.48910\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9025,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.664493396\)
\(L(\frac12)\) \(\approx\) \(4.664493396\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 \)
good2 \( 1 - 2.43T + 2T^{2} \)
3 \( 1 + 2.94T + 3T^{2} \)
7 \( 1 - 3.82T + 7T^{2} \)
11 \( 1 + 2.12T + 11T^{2} \)
13 \( 1 - 3.65T + 13T^{2} \)
17 \( 1 - 3.04T + 17T^{2} \)
23 \( 1 - 4.81T + 23T^{2} \)
29 \( 1 - 6.03T + 29T^{2} \)
31 \( 1 - 3.57T + 31T^{2} \)
37 \( 1 + 3.93T + 37T^{2} \)
41 \( 1 + 7.60T + 41T^{2} \)
43 \( 1 - 5.60T + 43T^{2} \)
47 \( 1 - 8.41T + 47T^{2} \)
53 \( 1 + 4.80T + 53T^{2} \)
59 \( 1 + 5.13T + 59T^{2} \)
61 \( 1 + 13.5T + 61T^{2} \)
67 \( 1 - 5.38T + 67T^{2} \)
71 \( 1 + 0.123T + 71T^{2} \)
73 \( 1 - 12.4T + 73T^{2} \)
79 \( 1 + 4.25T + 79T^{2} \)
83 \( 1 + 4.39T + 83T^{2} \)
89 \( 1 + 0.0772T + 89T^{2} \)
97 \( 1 - 18.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.39793255403015554513978263230, −6.64611350360793692272676320576, −6.07251372509112376044536589245, −5.50419494785824083450154673177, −4.88689302759474788434071978619, −4.70785776280992132990129826363, −3.79764895521946885106927332339, −2.87116223854227584392366738266, −1.71439217026713930965330205453, −0.945636504506242838558107832417, 0.945636504506242838558107832417, 1.71439217026713930965330205453, 2.87116223854227584392366738266, 3.79764895521946885106927332339, 4.70785776280992132990129826363, 4.88689302759474788434071978619, 5.50419494785824083450154673177, 6.07251372509112376044536589245, 6.64611350360793692272676320576, 7.39793255403015554513978263230

Graph of the $Z$-function along the critical line