L(s) = 1 | − 2·2-s + 2·4-s − 4·7-s − 3·9-s − 11-s + 2·13-s + 8·14-s − 4·16-s − 2·17-s + 6·18-s + 2·22-s + 6·23-s − 4·26-s − 8·28-s − 9·29-s + 7·31-s + 8·32-s + 4·34-s − 6·36-s − 2·37-s − 2·41-s + 2·43-s − 2·44-s − 12·46-s + 6·47-s + 9·49-s + 4·52-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 4-s − 1.51·7-s − 9-s − 0.301·11-s + 0.554·13-s + 2.13·14-s − 16-s − 0.485·17-s + 1.41·18-s + 0.426·22-s + 1.25·23-s − 0.784·26-s − 1.51·28-s − 1.67·29-s + 1.25·31-s + 1.41·32-s + 0.685·34-s − 36-s − 0.328·37-s − 0.312·41-s + 0.304·43-s − 0.301·44-s − 1.76·46-s + 0.875·47-s + 9/7·49-s + 0.554·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
good | 2 | \( 1 + p T + p T^{2} \) |
| 3 | \( 1 + p T^{2} \) |
| 7 | \( 1 + 4 T + p T^{2} \) |
| 11 | \( 1 + T + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 - 6 T + p T^{2} \) |
| 29 | \( 1 + 9 T + p T^{2} \) |
| 31 | \( 1 - 7 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 - 2 T + p T^{2} \) |
| 47 | \( 1 - 6 T + p T^{2} \) |
| 53 | \( 1 + 4 T + p T^{2} \) |
| 59 | \( 1 + 9 T + p T^{2} \) |
| 61 | \( 1 + 7 T + p T^{2} \) |
| 67 | \( 1 - 10 T + p T^{2} \) |
| 71 | \( 1 + T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 + T + p T^{2} \) |
| 83 | \( 1 + 6 T + p T^{2} \) |
| 89 | \( 1 - 11 T + p T^{2} \) |
| 97 | \( 1 - 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.51689909786797771491140391670, −6.82174019170213451453487066691, −6.28360229852540375243964692246, −5.58675723699578516917073033990, −4.61604020013260083325582315618, −3.53134444172460337429651985785, −2.91994397980323778713310415409, −2.07434307000442273481405593332, −0.823353708736406315621161374971, 0,
0.823353708736406315621161374971, 2.07434307000442273481405593332, 2.91994397980323778713310415409, 3.53134444172460337429651985785, 4.61604020013260083325582315618, 5.58675723699578516917073033990, 6.28360229852540375243964692246, 6.82174019170213451453487066691, 7.51689909786797771491140391670