L(s) = 1 | − 2-s − 4-s − 2·7-s + 3·8-s − 3·9-s − 4·11-s − 2·13-s + 2·14-s − 16-s − 4·17-s + 3·18-s + 4·22-s + 6·23-s + 2·26-s + 2·28-s + 6·29-s + 4·31-s − 5·32-s + 4·34-s + 3·36-s − 10·37-s + 10·41-s − 2·43-s + 4·44-s − 6·46-s + 6·47-s − 3·49-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s − 0.755·7-s + 1.06·8-s − 9-s − 1.20·11-s − 0.554·13-s + 0.534·14-s − 1/4·16-s − 0.970·17-s + 0.707·18-s + 0.852·22-s + 1.25·23-s + 0.392·26-s + 0.377·28-s + 1.11·29-s + 0.718·31-s − 0.883·32-s + 0.685·34-s + 1/2·36-s − 1.64·37-s + 1.56·41-s − 0.304·43-s + 0.603·44-s − 0.884·46-s + 0.875·47-s − 3/7·49-s + ⋯ |
Λ(s)=(=(9025s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9025s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1 |
good | 2 | 1+T+pT2 |
| 3 | 1+pT2 |
| 7 | 1+2T+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+4T+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+10T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1+2T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1−10T+pT2 |
| 59 | 1+pT2 |
| 61 | 1−2T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1+4T+pT2 |
| 73 | 1+4T+pT2 |
| 79 | 1+4T+pT2 |
| 83 | 1−18T+pT2 |
| 89 | 1−2T+pT2 |
| 97 | 1−6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.50136799669702123180560377799, −6.87231635746065961134156986184, −6.07990432071003204598796847667, −5.15049393566020071335799991802, −4.84132098018455846662836521172, −3.78973024595814975369272522800, −2.84788762764959730109880934230, −2.32358969255822247087366120152, −0.816254076128081240605604169498, 0,
0.816254076128081240605604169498, 2.32358969255822247087366120152, 2.84788762764959730109880934230, 3.78973024595814975369272522800, 4.84132098018455846662836521172, 5.15049393566020071335799991802, 6.07990432071003204598796847667, 6.87231635746065961134156986184, 7.50136799669702123180560377799