Properties

Label 2-9576-1.1-c1-0-16
Degree $2$
Conductor $9576$
Sign $1$
Analytic cond. $76.4647$
Root an. cond. $8.74441$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.585·5-s − 7-s − 2.82·11-s − 5.65·13-s + 6.24·17-s + 19-s − 8.48·23-s − 4.65·25-s − 1.75·29-s + 3.17·31-s − 0.585·35-s − 6·37-s + 3.17·41-s − 3.17·43-s + 13.4·47-s + 49-s − 9.07·53-s − 1.65·55-s + 13.6·59-s + 2·61-s − 3.31·65-s − 14.8·67-s + 12.7·71-s − 3.17·73-s + 2.82·77-s + 13.6·79-s + 3.75·83-s + ⋯
L(s)  = 1  + 0.261·5-s − 0.377·7-s − 0.852·11-s − 1.56·13-s + 1.51·17-s + 0.229·19-s − 1.76·23-s − 0.931·25-s − 0.326·29-s + 0.569·31-s − 0.0990·35-s − 0.986·37-s + 0.495·41-s − 0.483·43-s + 1.95·47-s + 0.142·49-s − 1.24·53-s − 0.223·55-s + 1.77·59-s + 0.256·61-s − 0.411·65-s − 1.81·67-s + 1.51·71-s − 0.371·73-s + 0.322·77-s + 1.53·79-s + 0.412·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9576\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(76.4647\)
Root analytic conductor: \(8.74441\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9576,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.271506520\)
\(L(\frac12)\) \(\approx\) \(1.271506520\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 - 0.585T + 5T^{2} \)
11 \( 1 + 2.82T + 11T^{2} \)
13 \( 1 + 5.65T + 13T^{2} \)
17 \( 1 - 6.24T + 17T^{2} \)
23 \( 1 + 8.48T + 23T^{2} \)
29 \( 1 + 1.75T + 29T^{2} \)
31 \( 1 - 3.17T + 31T^{2} \)
37 \( 1 + 6T + 37T^{2} \)
41 \( 1 - 3.17T + 41T^{2} \)
43 \( 1 + 3.17T + 43T^{2} \)
47 \( 1 - 13.4T + 47T^{2} \)
53 \( 1 + 9.07T + 53T^{2} \)
59 \( 1 - 13.6T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 + 14.8T + 67T^{2} \)
71 \( 1 - 12.7T + 71T^{2} \)
73 \( 1 + 3.17T + 73T^{2} \)
79 \( 1 - 13.6T + 79T^{2} \)
83 \( 1 - 3.75T + 83T^{2} \)
89 \( 1 - 11.1T + 89T^{2} \)
97 \( 1 + 11.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.76083065100596404967286202438, −7.15537255747868464387964204372, −6.22461875219590100730365318687, −5.56213161621931637802152680379, −5.13168951206594420682174749043, −4.16427336919708620066028792214, −3.39321886145384335730091767706, −2.53594682515733772089923285746, −1.90861539335780538358564877723, −0.51139164944939561271452412684, 0.51139164944939561271452412684, 1.90861539335780538358564877723, 2.53594682515733772089923285746, 3.39321886145384335730091767706, 4.16427336919708620066028792214, 5.13168951206594420682174749043, 5.56213161621931637802152680379, 6.22461875219590100730365318687, 7.15537255747868464387964204372, 7.76083065100596404967286202438

Graph of the $Z$-function along the critical line