Properties

Label 2-9576-1.1-c1-0-120
Degree $2$
Conductor $9576$
Sign $-1$
Analytic cond. $76.4647$
Root an. cond. $8.74441$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.23·5-s − 7-s − 4.47·11-s + 4.47·13-s − 3.23·17-s + 19-s − 8.47·23-s + 5.47·25-s − 2.76·29-s − 2.47·31-s − 3.23·35-s + 4.47·37-s + 2·41-s + 8·43-s − 1.23·47-s + 49-s − 1.23·53-s − 14.4·55-s + 4·59-s − 12.4·61-s + 14.4·65-s − 10.4·67-s − 0.763·71-s − 4.47·73-s + 4.47·77-s − 12·79-s − 7.70·83-s + ⋯
L(s)  = 1  + 1.44·5-s − 0.377·7-s − 1.34·11-s + 1.24·13-s − 0.784·17-s + 0.229·19-s − 1.76·23-s + 1.09·25-s − 0.513·29-s − 0.444·31-s − 0.546·35-s + 0.735·37-s + 0.312·41-s + 1.21·43-s − 0.180·47-s + 0.142·49-s − 0.169·53-s − 1.95·55-s + 0.520·59-s − 1.59·61-s + 1.79·65-s − 1.27·67-s − 0.0906·71-s − 0.523·73-s + 0.509·77-s − 1.35·79-s − 0.846·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9576\)    =    \(2^{3} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(76.4647\)
Root analytic conductor: \(8.74441\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9576,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 - 3.23T + 5T^{2} \)
11 \( 1 + 4.47T + 11T^{2} \)
13 \( 1 - 4.47T + 13T^{2} \)
17 \( 1 + 3.23T + 17T^{2} \)
23 \( 1 + 8.47T + 23T^{2} \)
29 \( 1 + 2.76T + 29T^{2} \)
31 \( 1 + 2.47T + 31T^{2} \)
37 \( 1 - 4.47T + 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 + 1.23T + 47T^{2} \)
53 \( 1 + 1.23T + 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 + 12.4T + 61T^{2} \)
67 \( 1 + 10.4T + 67T^{2} \)
71 \( 1 + 0.763T + 71T^{2} \)
73 \( 1 + 4.47T + 73T^{2} \)
79 \( 1 + 12T + 79T^{2} \)
83 \( 1 + 7.70T + 83T^{2} \)
89 \( 1 - 6.94T + 89T^{2} \)
97 \( 1 - 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.41899486715441144324200888191, −6.36711393436554598551836789273, −5.95676842864901874450457831269, −5.58549832141792829673213412358, −4.62231608038667603239056930205, −3.81719112521580628574694423564, −2.81445499711354156946386247002, −2.21113185854446894071579297139, −1.40704538397475749011271734054, 0, 1.40704538397475749011271734054, 2.21113185854446894071579297139, 2.81445499711354156946386247002, 3.81719112521580628574694423564, 4.62231608038667603239056930205, 5.58549832141792829673213412358, 5.95676842864901874450457831269, 6.36711393436554598551836789273, 7.41899486715441144324200888191

Graph of the $Z$-function along the critical line