L(s) = 1 | + 2-s + 4-s − 3.64·5-s − 2·7-s + 8-s − 3.64·10-s + 3.64·11-s − 5.29·13-s − 2·14-s + 16-s + 7.29·17-s − 5.64·19-s − 3.64·20-s + 3.64·22-s + 8.29·25-s − 5.29·26-s − 2·28-s + 1.29·29-s + 9.29·31-s + 32-s + 7.29·34-s + 7.29·35-s + 8.93·37-s − 5.64·38-s − 3.64·40-s − 6·41-s − 5.64·43-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 1.63·5-s − 0.755·7-s + 0.353·8-s − 1.15·10-s + 1.09·11-s − 1.46·13-s − 0.534·14-s + 0.250·16-s + 1.76·17-s − 1.29·19-s − 0.815·20-s + 0.777·22-s + 1.65·25-s − 1.03·26-s − 0.377·28-s + 0.239·29-s + 1.66·31-s + 0.176·32-s + 1.25·34-s + 1.23·35-s + 1.46·37-s − 0.915·38-s − 0.576·40-s − 0.937·41-s − 0.860·43-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 23 | \( 1 \) |
good | 5 | \( 1 + 3.64T + 5T^{2} \) |
| 7 | \( 1 + 2T + 7T^{2} \) |
| 11 | \( 1 - 3.64T + 11T^{2} \) |
| 13 | \( 1 + 5.29T + 13T^{2} \) |
| 17 | \( 1 - 7.29T + 17T^{2} \) |
| 19 | \( 1 + 5.64T + 19T^{2} \) |
| 29 | \( 1 - 1.29T + 29T^{2} \) |
| 31 | \( 1 - 9.29T + 31T^{2} \) |
| 37 | \( 1 - 8.93T + 37T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 + 5.64T + 43T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 - 3.64T + 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 5.64T + 61T^{2} \) |
| 67 | \( 1 + 0.937T + 67T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 - 3.29T + 73T^{2} \) |
| 79 | \( 1 - 12.5T + 79T^{2} \) |
| 83 | \( 1 + 8.35T + 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 9.29T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.24515776565207922372967763351, −6.65488293176757595381630936310, −6.15259847368495097183841229619, −5.00910843941488530672493320934, −4.51844857312380677350214928843, −3.79788563375317648573894904528, −3.26808122581276878806932088356, −2.52986271483881353465043552105, −1.13354214469691637143842240064, 0,
1.13354214469691637143842240064, 2.52986271483881353465043552105, 3.26808122581276878806932088356, 3.79788563375317648573894904528, 4.51844857312380677350214928843, 5.00910843941488530672493320934, 6.15259847368495097183841229619, 6.65488293176757595381630936310, 7.24515776565207922372967763351