Properties

Label 2-9522-1.1-c1-0-105
Degree $2$
Conductor $9522$
Sign $1$
Analytic cond. $76.0335$
Root an. cond. $8.71972$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 4.42·5-s − 3.31·7-s + 8-s + 4.42·10-s + 2.02·11-s + 3.02·13-s − 3.31·14-s + 16-s − 3.00·17-s + 7.15·19-s + 4.42·20-s + 2.02·22-s + 14.5·25-s + 3.02·26-s − 3.31·28-s − 1.52·29-s − 5.78·31-s + 32-s − 3.00·34-s − 14.6·35-s + 1.84·37-s + 7.15·38-s + 4.42·40-s + 1.06·41-s + 1.88·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + 1.97·5-s − 1.25·7-s + 0.353·8-s + 1.39·10-s + 0.609·11-s + 0.839·13-s − 0.886·14-s + 0.250·16-s − 0.729·17-s + 1.64·19-s + 0.989·20-s + 0.430·22-s + 2.91·25-s + 0.593·26-s − 0.626·28-s − 0.283·29-s − 1.03·31-s + 0.176·32-s − 0.515·34-s − 2.48·35-s + 0.303·37-s + 1.16·38-s + 0.699·40-s + 0.166·41-s + 0.288·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9522\)    =    \(2 \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(76.0335\)
Root analytic conductor: \(8.71972\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9522,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.134908869\)
\(L(\frac12)\) \(\approx\) \(5.134908869\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 - 4.42T + 5T^{2} \)
7 \( 1 + 3.31T + 7T^{2} \)
11 \( 1 - 2.02T + 11T^{2} \)
13 \( 1 - 3.02T + 13T^{2} \)
17 \( 1 + 3.00T + 17T^{2} \)
19 \( 1 - 7.15T + 19T^{2} \)
29 \( 1 + 1.52T + 29T^{2} \)
31 \( 1 + 5.78T + 31T^{2} \)
37 \( 1 - 1.84T + 37T^{2} \)
41 \( 1 - 1.06T + 41T^{2} \)
43 \( 1 - 1.88T + 43T^{2} \)
47 \( 1 - 0.748T + 47T^{2} \)
53 \( 1 - 12.7T + 53T^{2} \)
59 \( 1 + 1.79T + 59T^{2} \)
61 \( 1 + 3.90T + 61T^{2} \)
67 \( 1 - 3.70T + 67T^{2} \)
71 \( 1 - 4.00T + 71T^{2} \)
73 \( 1 + 5.40T + 73T^{2} \)
79 \( 1 + 7.86T + 79T^{2} \)
83 \( 1 + 4.03T + 83T^{2} \)
89 \( 1 + 5.59T + 89T^{2} \)
97 \( 1 + 13.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.23574970635293496012216598927, −6.83209737930168378386057931282, −6.11447227730855673547881008797, −5.77260207089560055093208084378, −5.20105482892269740483182439806, −4.14940670571336667556188894098, −3.32682310672670678647824548222, −2.72072220750600791277381005709, −1.85431252117678259237756174802, −1.02879679697240430922523333284, 1.02879679697240430922523333284, 1.85431252117678259237756174802, 2.72072220750600791277381005709, 3.32682310672670678647824548222, 4.14940670571336667556188894098, 5.20105482892269740483182439806, 5.77260207089560055093208084378, 6.11447227730855673547881008797, 6.83209737930168378386057931282, 7.23574970635293496012216598927

Graph of the $Z$-function along the critical line