Properties

Label 2-952-952.781-c1-0-126
Degree $2$
Conductor $952$
Sign $-0.931 + 0.363i$
Analytic cond. $7.60175$
Root an. cond. $2.75712$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.910 − 1.08i)2-s + (1.13 − 1.96i)3-s + (−0.342 − 1.97i)4-s + (0.297 + 0.515i)5-s + (−1.09 − 3.01i)6-s + (1.98 − 1.75i)7-s + (−2.44 − 1.42i)8-s + (−1.07 − 1.86i)9-s + (0.828 + 0.147i)10-s + (−1.45 + 2.52i)11-s + (−4.26 − 1.56i)12-s − 0.637i·13-s + (−0.0949 − 3.74i)14-s + 1.35·15-s + (−3.76 + 1.34i)16-s + (−0.970 − 4.00i)17-s + ⋯
L(s)  = 1  + (0.643 − 0.765i)2-s + (0.655 − 1.13i)3-s + (−0.171 − 0.985i)4-s + (0.133 + 0.230i)5-s + (−0.446 − 1.23i)6-s + (0.748 − 0.662i)7-s + (−0.864 − 0.503i)8-s + (−0.358 − 0.621i)9-s + (0.262 + 0.0465i)10-s + (−0.440 + 0.762i)11-s + (−1.23 − 0.451i)12-s − 0.176i·13-s + (−0.0253 − 0.999i)14-s + 0.348·15-s + (−0.941 + 0.337i)16-s + (−0.235 − 0.971i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.931 + 0.363i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 952 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.931 + 0.363i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(952\)    =    \(2^{3} \cdot 7 \cdot 17\)
Sign: $-0.931 + 0.363i$
Analytic conductor: \(7.60175\)
Root analytic conductor: \(2.75712\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{952} (781, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 952,\ (\ :1/2),\ -0.931 + 0.363i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.512312 - 2.72480i\)
\(L(\frac12)\) \(\approx\) \(0.512312 - 2.72480i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.910 + 1.08i)T \)
7 \( 1 + (-1.98 + 1.75i)T \)
17 \( 1 + (0.970 + 4.00i)T \)
good3 \( 1 + (-1.13 + 1.96i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + (-0.297 - 0.515i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (1.45 - 2.52i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + 0.637iT - 13T^{2} \)
19 \( 1 + (-3.15 + 1.81i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (6.02 - 3.47i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 - 5.28T + 29T^{2} \)
31 \( 1 + (8.87 + 5.12i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (-3.35 - 5.80i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 9.63iT - 41T^{2} \)
43 \( 1 + 3.51iT - 43T^{2} \)
47 \( 1 + (-4.34 - 7.52i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-8.12 - 4.68i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (-10.3 - 5.98i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (-3.38 - 5.85i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (11.9 + 6.92i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + 6.09iT - 71T^{2} \)
73 \( 1 + (-3.83 - 2.21i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (-3.55 + 2.05i)T + (39.5 - 68.4i)T^{2} \)
83 \( 1 + 4.84iT - 83T^{2} \)
89 \( 1 + (8.18 + 14.1i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 3.56iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.884568713616157002658665201128, −8.873253211308963314463559030226, −7.72042196923914478332390020311, −7.29975072226555119644317606601, −6.26486605054286803109632327787, −5.08091056079434232176830505536, −4.24459693463728954577344979861, −2.87742356512104047397219915668, −2.13516004080707359944177356265, −1.02775129739695222962753348615, 2.29545653595903781686084625987, 3.50846534325793679396246620277, 4.16999510560792270374679233043, 5.27797513515779220918277903847, 5.69647356615232951169152186463, 7.00735912951536175497229500997, 8.225584954480178275805910703062, 8.558810729500050940114804666502, 9.258829792406957533177636764790, 10.35306268836827999523106096738

Graph of the $Z$-function along the critical line