Properties

Label 2-952-1.1-c1-0-17
Degree $2$
Conductor $952$
Sign $-1$
Analytic cond. $7.60175$
Root an. cond. $2.75712$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.30·3-s + 0.302·5-s − 7-s − 1.30·9-s + 4.60·11-s − 4·13-s − 0.394·15-s + 17-s + 4.60·19-s + 1.30·21-s − 6·23-s − 4.90·25-s + 5.60·27-s − 8.60·29-s − 4.90·31-s − 6·33-s − 0.302·35-s − 4.60·37-s + 5.21·39-s + 0.697·41-s − 2.69·43-s − 0.394·45-s + 9.21·47-s + 49-s − 1.30·51-s − 7.69·53-s + 1.39·55-s + ⋯
L(s)  = 1  − 0.752·3-s + 0.135·5-s − 0.377·7-s − 0.434·9-s + 1.38·11-s − 1.10·13-s − 0.101·15-s + 0.242·17-s + 1.05·19-s + 0.284·21-s − 1.25·23-s − 0.981·25-s + 1.07·27-s − 1.59·29-s − 0.881·31-s − 1.04·33-s − 0.0511·35-s − 0.757·37-s + 0.834·39-s + 0.108·41-s − 0.411·43-s − 0.0588·45-s + 1.34·47-s + 0.142·49-s − 0.182·51-s − 1.05·53-s + 0.188·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 952 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(952\)    =    \(2^{3} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(7.60175\)
Root analytic conductor: \(2.75712\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 952,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 + 1.30T + 3T^{2} \)
5 \( 1 - 0.302T + 5T^{2} \)
11 \( 1 - 4.60T + 11T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
19 \( 1 - 4.60T + 19T^{2} \)
23 \( 1 + 6T + 23T^{2} \)
29 \( 1 + 8.60T + 29T^{2} \)
31 \( 1 + 4.90T + 31T^{2} \)
37 \( 1 + 4.60T + 37T^{2} \)
41 \( 1 - 0.697T + 41T^{2} \)
43 \( 1 + 2.69T + 43T^{2} \)
47 \( 1 - 9.21T + 47T^{2} \)
53 \( 1 + 7.69T + 53T^{2} \)
59 \( 1 + 5.21T + 59T^{2} \)
61 \( 1 + 4.69T + 61T^{2} \)
67 \( 1 + 13.5T + 67T^{2} \)
71 \( 1 - 0.605T + 71T^{2} \)
73 \( 1 + 5.90T + 73T^{2} \)
79 \( 1 + 1.21T + 79T^{2} \)
83 \( 1 + 17.8T + 83T^{2} \)
89 \( 1 - 17.2T + 89T^{2} \)
97 \( 1 - 4.30T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.558564189411860611852641412829, −9.085761984241640158024191322450, −7.75895933846673404314102862119, −7.02438833630184244664426358310, −5.97896969233322005907510089486, −5.51531859471624756899252121345, −4.27739803868748385253194827304, −3.25422768801156444484813283026, −1.75949894575165986063911582333, 0, 1.75949894575165986063911582333, 3.25422768801156444484813283026, 4.27739803868748385253194827304, 5.51531859471624756899252121345, 5.97896969233322005907510089486, 7.02438833630184244664426358310, 7.75895933846673404314102862119, 9.085761984241640158024191322450, 9.558564189411860611852641412829

Graph of the $Z$-function along the critical line