L(s) = 1 | + (−0.642 − 0.766i)2-s + (−0.197 + 0.541i)3-s + (−0.173 + 0.984i)4-s + (0.541 − 0.197i)6-s + (4.21 + 2.43i)7-s + (0.866 − 0.500i)8-s + (2.04 + 1.71i)9-s + (2.68 + 4.64i)11-s + (−0.499 − 0.288i)12-s + (−1.31 − 3.62i)13-s + (−0.844 − 4.79i)14-s + (−0.939 − 0.342i)16-s + (0.901 + 1.07i)17-s − 2.66i·18-s + (−4.35 − 0.226i)19-s + ⋯ |
L(s) = 1 | + (−0.454 − 0.541i)2-s + (−0.113 + 0.312i)3-s + (−0.0868 + 0.492i)4-s + (0.221 − 0.0804i)6-s + (1.59 + 0.919i)7-s + (0.306 − 0.176i)8-s + (0.681 + 0.571i)9-s + (0.809 + 1.40i)11-s + (−0.144 − 0.0831i)12-s + (−0.365 − 1.00i)13-s + (−0.225 − 1.28i)14-s + (−0.234 − 0.0855i)16-s + (0.218 + 0.260i)17-s − 0.628i·18-s + (−0.998 − 0.0520i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.648 - 0.761i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.648 - 0.761i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.31657 + 0.608102i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.31657 + 0.608102i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.642 + 0.766i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (4.35 + 0.226i)T \) |
good | 3 | \( 1 + (0.197 - 0.541i)T + (-2.29 - 1.92i)T^{2} \) |
| 7 | \( 1 + (-4.21 - 2.43i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.68 - 4.64i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.31 + 3.62i)T + (-9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (-0.901 - 1.07i)T + (-2.95 + 16.7i)T^{2} \) |
| 23 | \( 1 + (5.25 + 0.927i)T + (21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (-2.78 - 2.33i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (4.10 - 7.10i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 10.4iT - 37T^{2} \) |
| 41 | \( 1 + (-1.79 - 0.652i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-1.45 + 0.256i)T + (40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (-2.00 + 2.39i)T + (-8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + (-1.77 - 0.312i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (-5.61 + 4.70i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (-1.40 + 7.99i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (5.42 - 6.46i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-1.04 - 5.93i)T + (-66.7 + 24.2i)T^{2} \) |
| 73 | \( 1 + (-0.436 + 1.19i)T + (-55.9 - 46.9i)T^{2} \) |
| 79 | \( 1 + (15.6 + 5.68i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (-12.5 - 7.23i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-9.02 + 3.28i)T + (68.1 - 57.2i)T^{2} \) |
| 97 | \( 1 + (3.90 + 4.65i)T + (-16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34201100566909942098805555302, −9.374305321370710886437223388816, −8.544305756640830270426057295930, −7.83009591228322526030853210392, −7.05329435954354189040950793604, −5.56262101714495630135723422977, −4.75052663883449030402832874083, −4.02119228849092569273579050530, −2.26397547691918674342033452399, −1.66334261259586999762366770827,
0.879662470733886796715314649133, 1.86275897882785912582761617588, 3.96981138012998157226520049843, 4.50298257802120206214618030319, 5.87194072928934774489098524334, 6.61157177422547487166872412638, 7.46541618523230704114894755121, 8.153419510913036032153227292836, 8.917644398569347590534783580784, 9.856947618208440610245157228501