Properties

Label 2-950-95.44-c1-0-3
Degree $2$
Conductor $950$
Sign $-0.220 - 0.975i$
Analytic cond. $7.58578$
Root an. cond. $2.75423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.642 + 0.766i)2-s + (0.197 − 0.541i)3-s + (−0.173 + 0.984i)4-s + (0.541 − 0.197i)6-s + (−4.21 − 2.43i)7-s + (−0.866 + 0.500i)8-s + (2.04 + 1.71i)9-s + (2.68 + 4.64i)11-s + (0.499 + 0.288i)12-s + (1.31 + 3.62i)13-s + (−0.844 − 4.79i)14-s + (−0.939 − 0.342i)16-s + (−0.901 − 1.07i)17-s + 2.66i·18-s + (−4.35 − 0.226i)19-s + ⋯
L(s)  = 1  + (0.454 + 0.541i)2-s + (0.113 − 0.312i)3-s + (−0.0868 + 0.492i)4-s + (0.221 − 0.0804i)6-s + (−1.59 − 0.919i)7-s + (−0.306 + 0.176i)8-s + (0.681 + 0.571i)9-s + (0.809 + 1.40i)11-s + (0.144 + 0.0831i)12-s + (0.365 + 1.00i)13-s + (−0.225 − 1.28i)14-s + (−0.234 − 0.0855i)16-s + (−0.218 − 0.260i)17-s + 0.628i·18-s + (−0.998 − 0.0520i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.220 - 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.220 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(950\)    =    \(2 \cdot 5^{2} \cdot 19\)
Sign: $-0.220 - 0.975i$
Analytic conductor: \(7.58578\)
Root analytic conductor: \(2.75423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{950} (899, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 950,\ (\ :1/2),\ -0.220 - 0.975i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.01627 + 1.27107i\)
\(L(\frac12)\) \(\approx\) \(1.01627 + 1.27107i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.642 - 0.766i)T \)
5 \( 1 \)
19 \( 1 + (4.35 + 0.226i)T \)
good3 \( 1 + (-0.197 + 0.541i)T + (-2.29 - 1.92i)T^{2} \)
7 \( 1 + (4.21 + 2.43i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + (-2.68 - 4.64i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (-1.31 - 3.62i)T + (-9.95 + 8.35i)T^{2} \)
17 \( 1 + (0.901 + 1.07i)T + (-2.95 + 16.7i)T^{2} \)
23 \( 1 + (-5.25 - 0.927i)T + (21.6 + 7.86i)T^{2} \)
29 \( 1 + (-2.78 - 2.33i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (4.10 - 7.10i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 - 10.4iT - 37T^{2} \)
41 \( 1 + (-1.79 - 0.652i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (1.45 - 0.256i)T + (40.4 - 14.7i)T^{2} \)
47 \( 1 + (2.00 - 2.39i)T + (-8.16 - 46.2i)T^{2} \)
53 \( 1 + (1.77 + 0.312i)T + (49.8 + 18.1i)T^{2} \)
59 \( 1 + (-5.61 + 4.70i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (-1.40 + 7.99i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-5.42 + 6.46i)T + (-11.6 - 65.9i)T^{2} \)
71 \( 1 + (-1.04 - 5.93i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (0.436 - 1.19i)T + (-55.9 - 46.9i)T^{2} \)
79 \( 1 + (15.6 + 5.68i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (12.5 + 7.23i)T + (41.5 + 71.8i)T^{2} \)
89 \( 1 + (-9.02 + 3.28i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (-3.90 - 4.65i)T + (-16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.08999451277529621316644671415, −9.486451326712664110961777611012, −8.586328340875631925431988384481, −7.25450765861012316944578301480, −6.81962117407090547978913111416, −6.49763734804341439754061068977, −4.78859001756310627088420355514, −4.20205750233015012993442712930, −3.15135856312215187362190734773, −1.62290097430566302531048837958, 0.66590929801901476156977444848, 2.56372957626234648666070117652, 3.46757061603514767368362057970, 4.04349252263207127252931648328, 5.66347784727236320522171569852, 6.10443514723948076584744571644, 6.93770048184712711262790321667, 8.593372039467422387170417540816, 9.052876962056785780112533945577, 9.824208516484406873926573921317

Graph of the $Z$-function along the critical line