L(s) = 1 | + (0.342 + 0.939i)2-s + (−3.13 − 0.552i)3-s + (−0.766 + 0.642i)4-s + (−0.552 − 3.13i)6-s + (−2.89 + 1.67i)7-s + (−0.866 − 0.500i)8-s + (6.68 + 2.43i)9-s + (−3.09 + 5.35i)11-s + (2.75 − 1.58i)12-s + (−0.727 + 0.128i)13-s + (−2.56 − 2.15i)14-s + (0.173 − 0.984i)16-s + (−0.296 − 0.815i)17-s + 7.11i·18-s + (2.59 + 3.49i)19-s + ⋯ |
L(s) = 1 | + (0.241 + 0.664i)2-s + (−1.80 − 0.318i)3-s + (−0.383 + 0.321i)4-s + (−0.225 − 1.27i)6-s + (−1.09 + 0.632i)7-s + (−0.306 − 0.176i)8-s + (2.22 + 0.810i)9-s + (−0.932 + 1.61i)11-s + (0.794 − 0.458i)12-s + (−0.201 + 0.0355i)13-s + (−0.685 − 0.574i)14-s + (0.0434 − 0.246i)16-s + (−0.0720 − 0.197i)17-s + 1.67i·18-s + (0.596 + 0.802i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.379 + 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.379 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0800844 - 0.0537409i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0800844 - 0.0537409i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.342 - 0.939i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (-2.59 - 3.49i)T \) |
good | 3 | \( 1 + (3.13 + 0.552i)T + (2.81 + 1.02i)T^{2} \) |
| 7 | \( 1 + (2.89 - 1.67i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.09 - 5.35i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.727 - 0.128i)T + (12.2 - 4.44i)T^{2} \) |
| 17 | \( 1 + (0.296 + 0.815i)T + (-13.0 + 10.9i)T^{2} \) |
| 23 | \( 1 + (-0.735 - 0.875i)T + (-3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (7.32 + 2.66i)T + (22.2 + 18.6i)T^{2} \) |
| 31 | \( 1 + (3.23 + 5.60i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 1.68iT - 37T^{2} \) |
| 41 | \( 1 + (-1.68 + 9.54i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (-1.19 + 1.42i)T + (-7.46 - 42.3i)T^{2} \) |
| 47 | \( 1 + (-0.113 + 0.311i)T + (-36.0 - 30.2i)T^{2} \) |
| 53 | \( 1 + (-4.56 - 5.44i)T + (-9.20 + 52.1i)T^{2} \) |
| 59 | \( 1 + (-4.56 + 1.66i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (-5.53 + 4.64i)T + (10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (-1.00 + 2.74i)T + (-51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (5.27 + 4.42i)T + (12.3 + 69.9i)T^{2} \) |
| 73 | \( 1 + (7.69 + 1.35i)T + (68.5 + 24.9i)T^{2} \) |
| 79 | \( 1 + (-0.399 + 2.26i)T + (-74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-9.91 + 5.72i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (0.404 + 2.29i)T + (-83.6 + 30.4i)T^{2} \) |
| 97 | \( 1 + (-2.34 - 6.43i)T + (-74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.900778376371588392813100217907, −9.320134329710835946234212001937, −7.57333949810678404016549854915, −7.28224634173805383012970474482, −6.28387114920981517631699807379, −5.61097439895245415784552929625, −5.04482462595989777563790761745, −3.93208523355459959220515092891, −2.15105754121338008391485568768, −0.06973970436689238516012790900,
0.910001328099174067911841056868, 3.05375137584555004992846849772, 3.94186773945947579043885456453, 5.12560108091858667873527378314, 5.66321963576037700674075614655, 6.51477471372424068894790951876, 7.35527651956238567094939557313, 8.843766037935832260248730425944, 9.856005397036977215766957899264, 10.38215236639123464499211492968