L(s) = 1 | + i·2-s + 3.03i·3-s − 4-s − 3.03·6-s + 2.46i·7-s − i·8-s − 6.19·9-s + 0.728·11-s − 3.03i·12-s + 6.23i·13-s − 2.46·14-s + 16-s + 0.563i·17-s − 6.19i·18-s + 19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + 1.75i·3-s − 0.5·4-s − 1.23·6-s + 0.933i·7-s − 0.353i·8-s − 2.06·9-s + 0.219·11-s − 0.875i·12-s + 1.72i·13-s − 0.660·14-s + 0.250·16-s + 0.136i·17-s − 1.46i·18-s + 0.229·19-s + ⋯ |
Λ(s)=(=(950s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(950s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
950
= 2⋅52⋅19
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
7.58578 |
Root analytic conductor: |
2.75423 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ950(799,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 950, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
0.599132−0.969417i |
L(21) |
≈ |
0.599132−0.969417i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1−3.03iT−3T2 |
| 7 | 1−2.46iT−7T2 |
| 11 | 1−0.728T+11T2 |
| 13 | 1−6.23iT−13T2 |
| 17 | 1−0.563iT−17T2 |
| 23 | 1+4.63iT−23T2 |
| 29 | 1+10.2T+29T2 |
| 31 | 1−6.06T+31T2 |
| 37 | 1+5.72iT−37T2 |
| 41 | 1−4.79T+41T2 |
| 43 | 1+8.06iT−43T2 |
| 47 | 1−8.12iT−47T2 |
| 53 | 1−1.53iT−53T2 |
| 59 | 1−5.76T+59T2 |
| 61 | 1−10.9T+61T2 |
| 67 | 1−12.9iT−67T2 |
| 71 | 1+4.39T+71T2 |
| 73 | 1−4.09iT−73T2 |
| 79 | 1+15.3T+79T2 |
| 83 | 1+7.85iT−83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1−11.0iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37772803262404080473937016563, −9.492811624209865164620765616155, −9.050089046060552111810945216321, −8.500693345445627374180009519947, −7.15168726712593702235939717049, −6.05540930528989514022884749402, −5.39537682621277548494733873925, −4.39348245550699026646732106531, −3.86774574820099920160136304989, −2.42777354679122028722842091150,
0.55640147237257796701151293681, 1.47669690046997311806703958247, 2.74498952232078345304881435295, 3.67831137126918413856069349132, 5.22960580558928601152261085071, 6.07858436103319907958096065958, 7.16663547524415812857534170425, 7.74242295226464328730948966670, 8.374406721507450405134876753779, 9.584365608553994984386940221385