Properties

Label 2-950-5.4-c1-0-4
Degree $2$
Conductor $950$
Sign $-0.447 + 0.894i$
Analytic cond. $7.58578$
Root an. cond. $2.75423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + 3.03i·3-s − 4-s − 3.03·6-s + 2.46i·7-s i·8-s − 6.19·9-s + 0.728·11-s − 3.03i·12-s + 6.23i·13-s − 2.46·14-s + 16-s + 0.563i·17-s − 6.19i·18-s + 19-s + ⋯
L(s)  = 1  + 0.707i·2-s + 1.75i·3-s − 0.5·4-s − 1.23·6-s + 0.933i·7-s − 0.353i·8-s − 2.06·9-s + 0.219·11-s − 0.875i·12-s + 1.72i·13-s − 0.660·14-s + 0.250·16-s + 0.136i·17-s − 1.46i·18-s + 0.229·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(950\)    =    \(2 \cdot 5^{2} \cdot 19\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(7.58578\)
Root analytic conductor: \(2.75423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{950} (799, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 950,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.599132 - 0.969417i\)
\(L(\frac12)\) \(\approx\) \(0.599132 - 0.969417i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 3.03iT - 3T^{2} \)
7 \( 1 - 2.46iT - 7T^{2} \)
11 \( 1 - 0.728T + 11T^{2} \)
13 \( 1 - 6.23iT - 13T^{2} \)
17 \( 1 - 0.563iT - 17T^{2} \)
23 \( 1 + 4.63iT - 23T^{2} \)
29 \( 1 + 10.2T + 29T^{2} \)
31 \( 1 - 6.06T + 31T^{2} \)
37 \( 1 + 5.72iT - 37T^{2} \)
41 \( 1 - 4.79T + 41T^{2} \)
43 \( 1 + 8.06iT - 43T^{2} \)
47 \( 1 - 8.12iT - 47T^{2} \)
53 \( 1 - 1.53iT - 53T^{2} \)
59 \( 1 - 5.76T + 59T^{2} \)
61 \( 1 - 10.9T + 61T^{2} \)
67 \( 1 - 12.9iT - 67T^{2} \)
71 \( 1 + 4.39T + 71T^{2} \)
73 \( 1 - 4.09iT - 73T^{2} \)
79 \( 1 + 15.3T + 79T^{2} \)
83 \( 1 + 7.85iT - 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 - 11.0iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37772803262404080473937016563, −9.492811624209865164620765616155, −9.050089046060552111810945216321, −8.500693345445627374180009519947, −7.15168726712593702235939717049, −6.05540930528989514022884749402, −5.39537682621277548494733873925, −4.39348245550699026646732106531, −3.86774574820099920160136304989, −2.42777354679122028722842091150, 0.55640147237257796701151293681, 1.47669690046997311806703958247, 2.74498952232078345304881435295, 3.67831137126918413856069349132, 5.22960580558928601152261085071, 6.07858436103319907958096065958, 7.16663547524415812857534170425, 7.74242295226464328730948966670, 8.374406721507450405134876753779, 9.584365608553994984386940221385

Graph of the $Z$-function along the critical line