Properties

Label 2-950-19.11-c1-0-18
Degree $2$
Conductor $950$
Sign $0.988 + 0.149i$
Analytic cond. $7.58578$
Root an. cond. $2.75423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)2-s + (−0.851 + 1.47i)3-s + (−0.499 − 0.866i)4-s + (0.851 + 1.47i)6-s + 3.74·7-s − 0.999·8-s + (0.0492 + 0.0852i)9-s + 3.64·11-s + 1.70·12-s + (−3.01 − 5.23i)13-s + (1.87 − 3.24i)14-s + (−0.5 + 0.866i)16-s + (−2.04 + 3.54i)17-s + 0.0984·18-s + (−0.697 − 4.30i)19-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (−0.491 + 0.851i)3-s + (−0.249 − 0.433i)4-s + (0.347 + 0.602i)6-s + 1.41·7-s − 0.353·8-s + (0.0164 + 0.0284i)9-s + 1.09·11-s + 0.491·12-s + (−0.837 − 1.45i)13-s + (0.500 − 0.866i)14-s + (−0.125 + 0.216i)16-s + (−0.497 + 0.860i)17-s + 0.0231·18-s + (−0.160 − 0.987i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 + 0.149i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.988 + 0.149i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(950\)    =    \(2 \cdot 5^{2} \cdot 19\)
Sign: $0.988 + 0.149i$
Analytic conductor: \(7.58578\)
Root analytic conductor: \(2.75423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{950} (201, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 950,\ (\ :1/2),\ 0.988 + 0.149i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.90337 - 0.143056i\)
\(L(\frac12)\) \(\approx\) \(1.90337 - 0.143056i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 + 0.866i)T \)
5 \( 1 \)
19 \( 1 + (0.697 + 4.30i)T \)
good3 \( 1 + (0.851 - 1.47i)T + (-1.5 - 2.59i)T^{2} \)
7 \( 1 - 3.74T + 7T^{2} \)
11 \( 1 - 3.64T + 11T^{2} \)
13 \( 1 + (3.01 + 5.23i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (2.04 - 3.54i)T + (-8.5 - 14.7i)T^{2} \)
23 \( 1 + (-2.34 - 4.05i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-3.32 - 5.75i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 10.8T + 31T^{2} \)
37 \( 1 - 7.75T + 37T^{2} \)
41 \( 1 + (-3.99 + 6.92i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (2.19 - 3.80i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-0.871 - 1.50i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (0.871 + 1.50i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-3.67 + 6.36i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (1.15 + 1.99i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (3.37 + 5.83i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-0.994 + 1.72i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (4.59 - 7.95i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (3.07 - 5.33i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 5.69T + 83T^{2} \)
89 \( 1 + (-5.53 - 9.59i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (0.752 - 1.30i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.25481128640867325530455265426, −9.444323350012375966538469266433, −8.476937647738352666059615792700, −7.61876337160488924468382571207, −6.34620629919055779807170414208, −5.17465496480246804488881439210, −4.79768729991734040648227581331, −3.93488364768338585272986947507, −2.58755166472602948518837629595, −1.18974264539626580348104910164, 1.15190003861496537002423859161, 2.36810268098587072667134303254, 4.37903458654573574567234474561, 4.56841411525083332129362935510, 6.02996550111308522950622542279, 6.62042996253329388235500894959, 7.34311744069833032268002867114, 8.155484031540992836380058287803, 9.032502305840941348222117511259, 9.928528742677207683150528978381

Graph of the $Z$-function along the critical line