Properties

Label 2-950-1.1-c5-0-133
Degree $2$
Conductor $950$
Sign $-1$
Analytic cond. $152.364$
Root an. cond. $12.3436$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 17.4·3-s + 16·4-s + 69.9·6-s − 132.·7-s + 64·8-s + 62.5·9-s + 311.·11-s + 279.·12-s − 901.·13-s − 531.·14-s + 256·16-s + 157.·17-s + 250.·18-s + 361·19-s − 2.32e3·21-s + 1.24e3·22-s + 2.52e3·23-s + 1.11e3·24-s − 3.60e3·26-s − 3.15e3·27-s − 2.12e3·28-s + 4.73e3·29-s − 6.58e3·31-s + 1.02e3·32-s + 5.44e3·33-s + 631.·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.12·3-s + 0.5·4-s + 0.792·6-s − 1.02·7-s + 0.353·8-s + 0.257·9-s + 0.776·11-s + 0.560·12-s − 1.47·13-s − 0.724·14-s + 0.250·16-s + 0.132·17-s + 0.182·18-s + 0.229·19-s − 1.14·21-s + 0.548·22-s + 0.994·23-s + 0.396·24-s − 1.04·26-s − 0.832·27-s − 0.512·28-s + 1.04·29-s − 1.23·31-s + 0.176·32-s + 0.870·33-s + 0.0936·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(950\)    =    \(2 \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(152.364\)
Root analytic conductor: \(12.3436\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{950} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 950,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
5 \( 1 \)
19 \( 1 - 361T \)
good3 \( 1 - 17.4T + 243T^{2} \)
7 \( 1 + 132.T + 1.68e4T^{2} \)
11 \( 1 - 311.T + 1.61e5T^{2} \)
13 \( 1 + 901.T + 3.71e5T^{2} \)
17 \( 1 - 157.T + 1.41e6T^{2} \)
23 \( 1 - 2.52e3T + 6.43e6T^{2} \)
29 \( 1 - 4.73e3T + 2.05e7T^{2} \)
31 \( 1 + 6.58e3T + 2.86e7T^{2} \)
37 \( 1 + 8.50e3T + 6.93e7T^{2} \)
41 \( 1 - 1.97e4T + 1.15e8T^{2} \)
43 \( 1 + 1.09e4T + 1.47e8T^{2} \)
47 \( 1 + 1.50e4T + 2.29e8T^{2} \)
53 \( 1 + 2.16e4T + 4.18e8T^{2} \)
59 \( 1 + 4.06e4T + 7.14e8T^{2} \)
61 \( 1 - 6.15e3T + 8.44e8T^{2} \)
67 \( 1 + 6.27e4T + 1.35e9T^{2} \)
71 \( 1 + 5.53e4T + 1.80e9T^{2} \)
73 \( 1 - 4.85e4T + 2.07e9T^{2} \)
79 \( 1 - 3.10e4T + 3.07e9T^{2} \)
83 \( 1 + 4.10e4T + 3.93e9T^{2} \)
89 \( 1 + 1.70e4T + 5.58e9T^{2} \)
97 \( 1 + 1.39e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.129434144609116193537200684772, −7.926825121170063782183372099451, −7.14630541703623830423773226349, −6.41566966873357572970608230544, −5.29162062857896153583668196511, −4.28163452685650426557895937720, −3.20689990266173227905758790300, −2.83144276114041174353568395192, −1.62859656729032328239270440338, 0, 1.62859656729032328239270440338, 2.83144276114041174353568395192, 3.20689990266173227905758790300, 4.28163452685650426557895937720, 5.29162062857896153583668196511, 6.41566966873357572970608230544, 7.14630541703623830423773226349, 7.926825121170063782183372099451, 9.129434144609116193537200684772

Graph of the $Z$-function along the critical line