Properties

Label 2-950-1.1-c1-0-6
Degree $2$
Conductor $950$
Sign $1$
Analytic cond. $7.58578$
Root an. cond. $2.75423$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 1.77·3-s + 4-s − 1.77·6-s − 2.69·7-s + 8-s + 0.144·9-s + 5.54·11-s − 1.77·12-s − 2.91·13-s − 2.69·14-s + 16-s + 4.91·17-s + 0.144·18-s + 19-s + 4.77·21-s + 5.54·22-s + 3.60·23-s − 1.77·24-s − 2.91·26-s + 5.06·27-s − 2.69·28-s + 1.08·29-s + 7.54·31-s + 32-s − 9.83·33-s + 4.91·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.02·3-s + 0.5·4-s − 0.723·6-s − 1.01·7-s + 0.353·8-s + 0.0483·9-s + 1.67·11-s − 0.511·12-s − 0.809·13-s − 0.719·14-s + 0.250·16-s + 1.19·17-s + 0.0341·18-s + 0.229·19-s + 1.04·21-s + 1.18·22-s + 0.752·23-s − 0.361·24-s − 0.572·26-s + 0.974·27-s − 0.508·28-s + 0.200·29-s + 1.35·31-s + 0.176·32-s − 1.71·33-s + 0.843·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(950\)    =    \(2 \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(7.58578\)
Root analytic conductor: \(2.75423\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{950} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 950,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.639330195\)
\(L(\frac12)\) \(\approx\) \(1.639330195\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 1.77T + 3T^{2} \)
7 \( 1 + 2.69T + 7T^{2} \)
11 \( 1 - 5.54T + 11T^{2} \)
13 \( 1 + 2.91T + 13T^{2} \)
17 \( 1 - 4.91T + 17T^{2} \)
23 \( 1 - 3.60T + 23T^{2} \)
29 \( 1 - 1.08T + 29T^{2} \)
31 \( 1 - 7.54T + 31T^{2} \)
37 \( 1 - 4.54T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 9.54T + 43T^{2} \)
47 \( 1 + 0.836T + 47T^{2} \)
53 \( 1 - 9.78T + 53T^{2} \)
59 \( 1 - 12.9T + 59T^{2} \)
61 \( 1 + 7.38T + 61T^{2} \)
67 \( 1 - 2.85T + 67T^{2} \)
71 \( 1 - 14.4T + 71T^{2} \)
73 \( 1 - 5.15T + 73T^{2} \)
79 \( 1 + 3.09T + 79T^{2} \)
83 \( 1 - 1.71T + 83T^{2} \)
89 \( 1 + 5.09T + 89T^{2} \)
97 \( 1 + 17.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02137410483440977469406595274, −9.548316411523299794624782733183, −8.313911214172205567137647701297, −6.94564488845183948831283162403, −6.56949817105273219663539006717, −5.71920584680150902339911179367, −4.89805723004525089290368217354, −3.79832783309507638366050963113, −2.84385201194011928051731325330, −0.992063788575269969793546874418, 0.992063788575269969793546874418, 2.84385201194011928051731325330, 3.79832783309507638366050963113, 4.89805723004525089290368217354, 5.71920584680150902339911179367, 6.56949817105273219663539006717, 6.94564488845183948831283162403, 8.313911214172205567137647701297, 9.548316411523299794624782733183, 10.02137410483440977469406595274

Graph of the $Z$-function along the critical line