Properties

Label 2-950-1.1-c1-0-14
Degree $2$
Conductor $950$
Sign $1$
Analytic cond. $7.58578$
Root an. cond. $2.75423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 7-s + 8-s − 2·9-s + 12-s + 3·13-s + 14-s + 16-s + 7·17-s − 2·18-s − 19-s + 21-s + 5·23-s + 24-s + 3·26-s − 5·27-s + 28-s − 5·29-s + 10·31-s + 32-s + 7·34-s − 2·36-s − 2·37-s − 38-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.377·7-s + 0.353·8-s − 2/3·9-s + 0.288·12-s + 0.832·13-s + 0.267·14-s + 1/4·16-s + 1.69·17-s − 0.471·18-s − 0.229·19-s + 0.218·21-s + 1.04·23-s + 0.204·24-s + 0.588·26-s − 0.962·27-s + 0.188·28-s − 0.928·29-s + 1.79·31-s + 0.176·32-s + 1.20·34-s − 1/3·36-s − 0.328·37-s − 0.162·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 950 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(950\)    =    \(2 \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(7.58578\)
Root analytic conductor: \(2.75423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{950} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 950,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.108294837\)
\(L(\frac12)\) \(\approx\) \(3.108294837\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 - 7 T + p T^{2} \)
23 \( 1 - 5 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + 7 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 + 7 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 9 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09136053747614439193916058007, −9.124096583193053644378276228521, −8.219554230429573245107006668374, −7.66945543665100716740079236756, −6.45504716944047683817963259516, −5.64937010200653066985100482879, −4.75824277728229556408369314043, −3.52735220204295391316039136757, −2.89941971070429085644327902035, −1.44942997758882821125150367331, 1.44942997758882821125150367331, 2.89941971070429085644327902035, 3.52735220204295391316039136757, 4.75824277728229556408369314043, 5.64937010200653066985100482879, 6.45504716944047683817963259516, 7.66945543665100716740079236756, 8.219554230429573245107006668374, 9.124096583193053644378276228521, 10.09136053747614439193916058007

Graph of the $Z$-function along the critical line