L(s) = 1 | + 4.35·2-s − 17.4·3-s + 3.00·4-s + 25·5-s − 76.0·6-s − 56.6·8-s + 223.·9-s + 108.·10-s + 62·11-s − 52.3·12-s + 331.·13-s − 435.·15-s − 295·16-s + 972.·18-s + 361·19-s + 75.0·20-s + 270.·22-s + 987.·24-s + 625·25-s + 1.44e3·26-s − 2.47e3·27-s − 1.90e3·30-s − 379.·32-s − 1.08e3·33-s + 669.·36-s − 714.·37-s + 1.57e3·38-s + ⋯ |
L(s) = 1 | + 1.08·2-s − 1.93·3-s + 0.187·4-s + 5-s − 2.11·6-s − 0.885·8-s + 2.75·9-s + 1.08·10-s + 0.512·11-s − 0.363·12-s + 1.96·13-s − 1.93·15-s − 1.15·16-s + 3.00·18-s + 19-s + 0.187·20-s + 0.558·22-s + 1.71·24-s + 25-s + 2.13·26-s − 3.39·27-s − 2.11·30-s − 0.370·32-s − 0.992·33-s + 0.516·36-s − 0.522·37-s + 1.08·38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.850640809\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.850640809\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - 25T \) |
| 19 | \( 1 - 361T \) |
good | 2 | \( 1 - 4.35T + 16T^{2} \) |
| 3 | \( 1 + 17.4T + 81T^{2} \) |
| 7 | \( 1 - 2.40e3T^{2} \) |
| 11 | \( 1 - 62T + 1.46e4T^{2} \) |
| 13 | \( 1 - 331.T + 2.85e4T^{2} \) |
| 17 | \( 1 - 8.35e4T^{2} \) |
| 23 | \( 1 - 2.79e5T^{2} \) |
| 29 | \( 1 - 7.07e5T^{2} \) |
| 31 | \( 1 - 9.23e5T^{2} \) |
| 37 | \( 1 + 714.T + 1.87e6T^{2} \) |
| 41 | \( 1 - 2.82e6T^{2} \) |
| 43 | \( 1 - 3.41e6T^{2} \) |
| 47 | \( 1 - 4.87e6T^{2} \) |
| 53 | \( 1 - 5.56e3T + 7.89e6T^{2} \) |
| 59 | \( 1 - 1.21e7T^{2} \) |
| 61 | \( 1 + 7.13e3T + 1.38e7T^{2} \) |
| 67 | \( 1 - 6.60e3T + 2.01e7T^{2} \) |
| 71 | \( 1 - 2.54e7T^{2} \) |
| 73 | \( 1 - 2.83e7T^{2} \) |
| 79 | \( 1 - 3.89e7T^{2} \) |
| 83 | \( 1 - 4.74e7T^{2} \) |
| 89 | \( 1 - 6.27e7T^{2} \) |
| 97 | \( 1 - 1.07e4T + 8.85e7T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.24889824268321934601030279518, −12.24482677212137942277820476746, −11.39281249452580471900645097427, −10.42312666253807203615578862130, −9.149949840979579252312317306240, −6.71068741944141999428715613552, −5.93142777306281171668841638918, −5.26451363876237482148534361958, −3.91912409697826439021313716622, −1.13405460170998045044931564503,
1.13405460170998045044931564503, 3.91912409697826439021313716622, 5.26451363876237482148534361958, 5.93142777306281171668841638918, 6.71068741944141999428715613552, 9.149949840979579252312317306240, 10.42312666253807203615578862130, 11.39281249452580471900645097427, 12.24482677212137942277820476746, 13.24889824268321934601030279518