Properties

Label 2-95-95.68-c4-0-29
Degree $2$
Conductor $95$
Sign $-0.923 - 0.384i$
Analytic cond. $9.82014$
Root an. cond. $3.13371$
Motivic weight $4$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.19 − 4.45i)2-s + (−12.4 + 3.33i)3-s + (−4.59 + 2.65i)4-s + (16.0 − 19.2i)5-s + (29.7 + 51.4i)6-s + (56.2 − 56.2i)7-s + (−34.8 − 34.8i)8-s + (73.5 − 42.4i)9-s + (−104. − 48.4i)10-s − 0.443·11-s + (48.3 − 48.3i)12-s + (7.53 − 28.1i)13-s + (−317. − 183. i)14-s + (−135. + 292. i)15-s + (−156. + 270. i)16-s + (5.27 + 19.7i)17-s + ⋯
L(s)  = 1  + (−0.298 − 1.11i)2-s + (−1.38 + 0.370i)3-s + (−0.287 + 0.165i)4-s + (0.640 − 0.768i)5-s + (0.825 + 1.43i)6-s + (1.14 − 1.14i)7-s + (−0.545 − 0.545i)8-s + (0.907 − 0.524i)9-s + (−1.04 − 0.484i)10-s − 0.00366·11-s + (0.335 − 0.335i)12-s + (0.0445 − 0.166i)13-s + (−1.62 − 0.936i)14-s + (−0.600 + 1.29i)15-s + (−0.610 + 1.05i)16-s + (0.0182 + 0.0681i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 - 0.384i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.923 - 0.384i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95\)    =    \(5 \cdot 19\)
Sign: $-0.923 - 0.384i$
Analytic conductor: \(9.82014\)
Root analytic conductor: \(3.13371\)
Motivic weight: \(4\)
Rational: no
Arithmetic: yes
Character: $\chi_{95} (68, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 95,\ (\ :2),\ -0.923 - 0.384i)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(0.162794 + 0.815329i\)
\(L(\frac12)\) \(\approx\) \(0.162794 + 0.815329i\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-16.0 + 19.2i)T \)
19 \( 1 + (358. - 42.4i)T \)
good2 \( 1 + (1.19 + 4.45i)T + (-13.8 + 8i)T^{2} \)
3 \( 1 + (12.4 - 3.33i)T + (70.1 - 40.5i)T^{2} \)
7 \( 1 + (-56.2 + 56.2i)T - 2.40e3iT^{2} \)
11 \( 1 + 0.443T + 1.46e4T^{2} \)
13 \( 1 + (-7.53 + 28.1i)T + (-2.47e4 - 1.42e4i)T^{2} \)
17 \( 1 + (-5.27 - 19.7i)T + (-7.23e4 + 4.17e4i)T^{2} \)
23 \( 1 + (-96.0 + 358. i)T + (-2.42e5 - 1.39e5i)T^{2} \)
29 \( 1 + (1.07e3 - 623. i)T + (3.53e5 - 6.12e5i)T^{2} \)
31 \( 1 - 490.T + 9.23e5T^{2} \)
37 \( 1 + (1.54e3 - 1.54e3i)T - 1.87e6iT^{2} \)
41 \( 1 + (-226. + 391. i)T + (-1.41e6 - 2.44e6i)T^{2} \)
43 \( 1 + (-2.48e3 + 665. i)T + (2.96e6 - 1.70e6i)T^{2} \)
47 \( 1 + (4.26e3 + 1.14e3i)T + (4.22e6 + 2.43e6i)T^{2} \)
53 \( 1 + (-538. + 2.00e3i)T + (-6.83e6 - 3.94e6i)T^{2} \)
59 \( 1 + (175. + 101. i)T + (6.05e6 + 1.04e7i)T^{2} \)
61 \( 1 + (-2.96e3 - 5.13e3i)T + (-6.92e6 + 1.19e7i)T^{2} \)
67 \( 1 + (-6.31e3 - 1.69e3i)T + (1.74e7 + 1.00e7i)T^{2} \)
71 \( 1 + (-2.30e3 + 4.00e3i)T + (-1.27e7 - 2.20e7i)T^{2} \)
73 \( 1 + (-1.02e3 + 274. i)T + (2.45e7 - 1.41e7i)T^{2} \)
79 \( 1 + (191. + 110. i)T + (1.94e7 + 3.37e7i)T^{2} \)
83 \( 1 + (5.08e3 + 5.08e3i)T + 4.74e7iT^{2} \)
89 \( 1 + (-4.57e3 + 2.64e3i)T + (3.13e7 - 5.43e7i)T^{2} \)
97 \( 1 + (1.23e3 + 4.60e3i)T + (-7.66e7 + 4.42e7i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.31869979604185184698710849055, −11.33140143960331238478018651846, −10.64988391968940054294893255247, −10.00324128020248847827929591701, −8.519113795700391602500512842413, −6.64961278638049538236349155155, −5.28282567303787363038412941603, −4.21016523272370585746380290280, −1.66815376196526671203288062574, −0.50884523779386991678140326801, 2.10828528991019293812312230091, 5.22664779558964283072656232242, 5.90476771382431823909260334767, 6.78899731423003109641255608028, 7.973605966560872622597023225982, 9.289686179873701438313384910989, 11.04050510038936597064611161806, 11.47927881949073611311227931876, 12.63915310071202286942040108854, 14.24601451709440201223883646351

Graph of the $Z$-function along the critical line