Properties

Label 2-95-5.4-c1-0-6
Degree $2$
Conductor $95$
Sign $-0.165 + 0.986i$
Analytic cond. $0.758578$
Root an. cond. $0.870964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.906i·2-s − 3.21i·3-s + 1.17·4-s + (−0.370 + 2.20i)5-s − 2.91·6-s + 2.59i·7-s − 2.88i·8-s − 7.35·9-s + (1.99 + 0.336i)10-s + 0.741·11-s − 3.78i·12-s + 3.78i·13-s + 2.35·14-s + (7.09 + 1.19i)15-s − 0.258·16-s − 3.16i·17-s + ⋯
L(s)  = 1  − 0.641i·2-s − 1.85i·3-s + 0.588·4-s + (−0.165 + 0.986i)5-s − 1.19·6-s + 0.981i·7-s − 1.01i·8-s − 2.45·9-s + (0.632 + 0.106i)10-s + 0.223·11-s − 1.09i·12-s + 1.05i·13-s + 0.629·14-s + (1.83 + 0.307i)15-s − 0.0647·16-s − 0.768i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.165 + 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.165 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95\)    =    \(5 \cdot 19\)
Sign: $-0.165 + 0.986i$
Analytic conductor: \(0.758578\)
Root analytic conductor: \(0.870964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{95} (39, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 95,\ (\ :1/2),\ -0.165 + 0.986i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.700708 - 0.828280i\)
\(L(\frac12)\) \(\approx\) \(0.700708 - 0.828280i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (0.370 - 2.20i)T \)
19 \( 1 - T \)
good2 \( 1 + 0.906iT - 2T^{2} \)
3 \( 1 + 3.21iT - 3T^{2} \)
7 \( 1 - 2.59iT - 7T^{2} \)
11 \( 1 - 0.741T + 11T^{2} \)
13 \( 1 - 3.78iT - 13T^{2} \)
17 \( 1 + 3.16iT - 17T^{2} \)
23 \( 1 + 0.570iT - 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 5.83T + 31T^{2} \)
37 \( 1 + 1.40iT - 37T^{2} \)
41 \( 1 + 3.83T + 41T^{2} \)
43 \( 1 - 2.59iT - 43T^{2} \)
47 \( 1 - 5.08iT - 47T^{2} \)
53 \( 1 - 0.160iT - 53T^{2} \)
59 \( 1 + 8.35T + 59T^{2} \)
61 \( 1 + 8.57T + 61T^{2} \)
67 \( 1 + 14.8iT - 67T^{2} \)
71 \( 1 - 3.64T + 71T^{2} \)
73 \( 1 - 10.8iT - 73T^{2} \)
79 \( 1 + 1.83T + 79T^{2} \)
83 \( 1 - 4.19iT - 83T^{2} \)
89 \( 1 - 16.9T + 89T^{2} \)
97 \( 1 + 3.78iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53304662281376563406825596224, −12.29063795155086185514024688353, −11.78191174422480223340105178181, −11.07485810908296983207483240049, −9.304872903419843423133457051055, −7.75408327969934629343156968149, −6.83650645212953768084237113682, −6.09282140385043929191562418675, −2.95155312134369826333245775075, −1.93999957052663533849038393354, 3.58692097471413472529163800639, 4.83373972503331346542571536513, 5.87699445232068947900000267677, 7.77735111826024365539520968831, 8.778170423991545566308717387674, 10.06730519505426476062548326502, 10.81081115481720680696671099632, 11.90795840004636965826270360202, 13.54030201642064528606940691131, 14.79744443724202984233047766878

Graph of the $Z$-function along the critical line