L(s) = 1 | + (1 + 1.73i)3-s + (1 − 1.73i)4-s + (0.5 + 0.866i)5-s − 4·7-s + (−0.499 + 0.866i)9-s + 3·11-s + 3.99·12-s + (−1 + 1.73i)13-s + (−0.999 + 1.73i)15-s + (−1.99 − 3.46i)16-s + (−3 − 5.19i)17-s + (−3.5 + 2.59i)19-s + 1.99·20-s + (−4 − 6.92i)21-s + (−0.499 + 0.866i)25-s + ⋯ |
L(s) = 1 | + (0.577 + 0.999i)3-s + (0.5 − 0.866i)4-s + (0.223 + 0.387i)5-s − 1.51·7-s + (−0.166 + 0.288i)9-s + 0.904·11-s + 1.15·12-s + (−0.277 + 0.480i)13-s + (−0.258 + 0.447i)15-s + (−0.499 − 0.866i)16-s + (−0.727 − 1.26i)17-s + (−0.802 + 0.596i)19-s + 0.447·20-s + (−0.872 − 1.51i)21-s + (−0.0999 + 0.173i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.910 - 0.412i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.15103 + 0.248770i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.15103 + 0.248770i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (3.5 - 2.59i)T \) |
good | 2 | \( 1 + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1 - 1.73i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + 4T + 7T^{2} \) |
| 11 | \( 1 - 3T + 11T^{2} \) |
| 13 | \( 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 + 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 7T + 31T^{2} \) |
| 37 | \( 1 - 8T + 37T^{2} \) |
| 41 | \( 1 + (-3 - 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3 - 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-3 + 5.19i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.5 - 12.9i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 - 4.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.5 - 2.59i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (4 + 6.92i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.5 + 4.33i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 12T + 83T^{2} \) |
| 89 | \( 1 + (-7.5 + 12.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (4 + 6.92i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.45727815431112247704379615372, −13.23941662520608353357695345489, −11.74685280654655406145570868760, −10.55286062112174331753025360208, −9.547593772168487256781364363024, −9.280394832524382960342480921885, −6.93957105375992591277788891737, −6.12009696796375254811739836851, −4.25245972936901947248198134348, −2.76150367300491270317309970663,
2.29937073169802967093938323200, 3.77337017171378786291803365910, 6.33318627269780152687854974749, 7.03575539981179466954492587892, 8.323530410914496101847811241859, 9.239927903917167007568240168427, 10.80327490361199919615475316806, 12.40959478732948953346559269490, 12.79406976587063842094663671018, 13.46187718623727369698285947222