Properties

Label 2-95-19.5-c1-0-2
Degree $2$
Conductor $95$
Sign $0.347 - 0.937i$
Analytic cond. $0.758578$
Root an. cond. $0.870964$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.289 − 0.105i)2-s + (−0.285 + 1.61i)3-s + (−1.45 + 1.22i)4-s + (0.766 + 0.642i)5-s + (0.0879 + 0.498i)6-s + (−0.0445 − 0.0772i)7-s + (−0.601 + 1.04i)8-s + (0.279 + 0.101i)9-s + (0.289 + 0.105i)10-s + (1.68 − 2.91i)11-s + (−1.56 − 2.71i)12-s + (0.0369 + 0.209i)13-s + (−0.0210 − 0.0176i)14-s + (−1.25 + 1.05i)15-s + (0.597 − 3.38i)16-s + (2.36 − 0.859i)17-s + ⋯
L(s)  = 1  + (0.204 − 0.0744i)2-s + (−0.164 + 0.934i)3-s + (−0.729 + 0.612i)4-s + (0.342 + 0.287i)5-s + (0.0358 + 0.203i)6-s + (−0.0168 − 0.0291i)7-s + (−0.212 + 0.368i)8-s + (0.0931 + 0.0339i)9-s + (0.0915 + 0.0333i)10-s + (0.507 − 0.879i)11-s + (−0.452 − 0.782i)12-s + (0.0102 + 0.0581i)13-s + (−0.00562 − 0.00471i)14-s + (−0.325 + 0.272i)15-s + (0.149 − 0.846i)16-s + (0.573 − 0.208i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.347 - 0.937i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.347 - 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95\)    =    \(5 \cdot 19\)
Sign: $0.347 - 0.937i$
Analytic conductor: \(0.758578\)
Root analytic conductor: \(0.870964\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{95} (81, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 95,\ (\ :1/2),\ 0.347 - 0.937i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.801578 + 0.557626i\)
\(L(\frac12)\) \(\approx\) \(0.801578 + 0.557626i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-0.766 - 0.642i)T \)
19 \( 1 + (-0.949 + 4.25i)T \)
good2 \( 1 + (-0.289 + 0.105i)T + (1.53 - 1.28i)T^{2} \)
3 \( 1 + (0.285 - 1.61i)T + (-2.81 - 1.02i)T^{2} \)
7 \( 1 + (0.0445 + 0.0772i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-1.68 + 2.91i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-0.0369 - 0.209i)T + (-12.2 + 4.44i)T^{2} \)
17 \( 1 + (-2.36 + 0.859i)T + (13.0 - 10.9i)T^{2} \)
23 \( 1 + (4.57 - 3.83i)T + (3.99 - 22.6i)T^{2} \)
29 \( 1 + (-4.51 - 1.64i)T + (22.2 + 18.6i)T^{2} \)
31 \( 1 + (4.03 + 6.98i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 1.84T + 37T^{2} \)
41 \( 1 + (0.523 - 2.96i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (1.87 + 1.57i)T + (7.46 + 42.3i)T^{2} \)
47 \( 1 + (-7.15 - 2.60i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 + (6.43 - 5.39i)T + (9.20 - 52.1i)T^{2} \)
59 \( 1 + (9.80 - 3.56i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (0.757 - 0.635i)T + (10.5 - 60.0i)T^{2} \)
67 \( 1 + (9.37 + 3.41i)T + (51.3 + 43.0i)T^{2} \)
71 \( 1 + (-4.73 - 3.97i)T + (12.3 + 69.9i)T^{2} \)
73 \( 1 + (-2.73 + 15.5i)T + (-68.5 - 24.9i)T^{2} \)
79 \( 1 + (0.178 - 1.01i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (8.96 + 15.5i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (-0.113 - 0.646i)T + (-83.6 + 30.4i)T^{2} \)
97 \( 1 + (15.7 - 5.75i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02880802861937871891786709567, −13.38083821824791183554619900994, −12.02735158004872362257507064715, −10.98498747871912552023347118810, −9.760119043870399524910614290020, −8.995530121615740573835254547102, −7.56842323178309201110647357839, −5.77949338351333886110231164885, −4.48886889489644814220878016055, −3.31351255353067939222715221474, 1.50458090544965156060350167378, 4.24795213040649648476181885417, 5.70261461665257519359825228431, 6.75436420886553543660391315704, 8.167539645474115529240445937376, 9.521667427616390307140170519264, 10.34963048497920775003470027735, 12.28201971828227927970057113013, 12.57176963214683648029068061529, 13.85938792235623357978116537883

Graph of the $Z$-function along the critical line