Properties

Label 2-945-5.4-c1-0-8
Degree $2$
Conductor $945$
Sign $0.447 - 0.894i$
Analytic cond. $7.54586$
Root an. cond. $2.74697$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + 4-s + (−1 + 2i)5-s + i·7-s − 3i·8-s + (2 + i)10-s − 3·11-s + 7i·13-s + 14-s − 16-s + 4i·17-s − 3·19-s + (−1 + 2i)20-s + 3i·22-s + (−3 − 4i)25-s + 7·26-s + ⋯
L(s)  = 1  − 0.707i·2-s + 0.5·4-s + (−0.447 + 0.894i)5-s + 0.377i·7-s − 1.06i·8-s + (0.632 + 0.316i)10-s − 0.904·11-s + 1.94i·13-s + 0.267·14-s − 0.250·16-s + 0.970i·17-s − 0.688·19-s + (−0.223 + 0.447i)20-s + 0.639i·22-s + (−0.600 − 0.800i)25-s + 1.37·26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 945 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 945 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(945\)    =    \(3^{3} \cdot 5 \cdot 7\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(7.54586\)
Root analytic conductor: \(2.74697\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{945} (379, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 945,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.07962 + 0.667246i\)
\(L(\frac12)\) \(\approx\) \(1.07962 + 0.667246i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (1 - 2i)T \)
7 \( 1 - iT \)
good2 \( 1 + iT - 2T^{2} \)
11 \( 1 + 3T + 11T^{2} \)
13 \( 1 - 7iT - 13T^{2} \)
17 \( 1 - 4iT - 17T^{2} \)
19 \( 1 + 3T + 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 - 4iT - 37T^{2} \)
41 \( 1 + 11T + 41T^{2} \)
43 \( 1 - 5iT - 43T^{2} \)
47 \( 1 - 9iT - 47T^{2} \)
53 \( 1 - 3iT - 53T^{2} \)
59 \( 1 - 10T + 59T^{2} \)
61 \( 1 + 2T + 61T^{2} \)
67 \( 1 - 7iT - 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 + 15iT - 73T^{2} \)
79 \( 1 - 14T + 79T^{2} \)
83 \( 1 - iT - 83T^{2} \)
89 \( 1 - 15T + 89T^{2} \)
97 \( 1 - 2iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37809620991931755144409460468, −9.664682070354731271746202804498, −8.521907152001512226299167665749, −7.65043015072328358803321029365, −6.60659165941523676149445098861, −6.28090574662561220900071170407, −4.62404308084751685820420218927, −3.68216563265749536040987796800, −2.64689265799565623510362069605, −1.81749106988195979122706567054, 0.55467869404558245472692614666, 2.38140584795928833866537721242, 3.54884153493614247323759448890, 5.10881718692297764682261251742, 5.31211718995066015877005594865, 6.57024596159610698809319332991, 7.53634461850180133226083988418, 8.066231209283726939295948682156, 8.662346305912895277198102486764, 10.03489633630654000041739626521

Graph of the $Z$-function along the critical line