L(s) = 1 | + 2.18i·2-s − 2.79·4-s + (−2.18 + 0.456i)5-s − i·7-s − 1.73i·8-s + (−0.999 − 4.79i)10-s − 1.73·11-s − 4.79i·13-s + 2.18·14-s − 1.79·16-s − 5.65i·17-s + 6.79·19-s + (6.10 − 1.27i)20-s − 3.79i·22-s + 4.83i·23-s + ⋯ |
L(s) = 1 | + 1.54i·2-s − 1.39·4-s + (−0.978 + 0.204i)5-s − 0.377i·7-s − 0.612i·8-s + (−0.316 − 1.51i)10-s − 0.522·11-s − 1.32i·13-s + 0.585·14-s − 0.447·16-s − 1.37i·17-s + 1.55·19-s + (1.36 − 0.285i)20-s − 0.808i·22-s + 1.00i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 945 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.204i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 945 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.978 - 0.204i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.791823 + 0.0817508i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.791823 + 0.0817508i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.18 - 0.456i)T \) |
| 7 | \( 1 + iT \) |
good | 2 | \( 1 - 2.18iT - 2T^{2} \) |
| 11 | \( 1 + 1.73T + 11T^{2} \) |
| 13 | \( 1 + 4.79iT - 13T^{2} \) |
| 17 | \( 1 + 5.65iT - 17T^{2} \) |
| 19 | \( 1 - 6.79T + 19T^{2} \) |
| 23 | \( 1 - 4.83iT - 23T^{2} \) |
| 29 | \( 1 + 3.00T + 29T^{2} \) |
| 31 | \( 1 + 8.58T + 31T^{2} \) |
| 37 | \( 1 + 10.1iT - 37T^{2} \) |
| 41 | \( 1 - 9.11T + 41T^{2} \) |
| 43 | \( 1 - iT - 43T^{2} \) |
| 47 | \( 1 - 1.73iT - 47T^{2} \) |
| 53 | \( 1 + 6.56iT - 53T^{2} \) |
| 59 | \( 1 - 7.74T + 59T^{2} \) |
| 61 | \( 1 - 4.79T + 61T^{2} \) |
| 67 | \( 1 - 1.37iT - 67T^{2} \) |
| 71 | \( 1 + 1.17T + 71T^{2} \) |
| 73 | \( 1 - 4.58iT - 73T^{2} \) |
| 79 | \( 1 + 3.37T + 79T^{2} \) |
| 83 | \( 1 + 17.4iT - 83T^{2} \) |
| 89 | \( 1 + 8.66T + 89T^{2} \) |
| 97 | \( 1 + 1.37iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.781772414622468131269084579476, −9.004981576337246863076284936515, −7.894926219482424124809868473532, −7.46275728875334921659238389870, −7.11099508459148429100648709958, −5.54686870193906911163587397999, −5.30610879755805867387451918023, −3.98997775338137963929094197101, −2.94853352910896821568089382637, −0.41028041964600514500615788575,
1.30559380936349052883061588368, 2.50707273831073543360774532949, 3.61145116036443944254329650659, 4.26669587787356413789982273579, 5.30090904618887456190227142742, 6.68415756675247261719579996782, 7.71164555794783657843590205023, 8.673571352977644611896314935332, 9.309696547101802290896178234951, 10.20207816919851488727015013429