Properties

Label 2-945-5.4-c1-0-15
Degree $2$
Conductor $945$
Sign $-0.204 - 0.978i$
Analytic cond. $7.54586$
Root an. cond. $2.74697$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.456i·2-s + 1.79·4-s + (0.456 + 2.18i)5-s + i·7-s + 1.73i·8-s + (−0.999 + 0.208i)10-s − 1.73·11-s + 0.208i·13-s − 0.456·14-s + 2.79·16-s + 3.00i·17-s + 2.20·19-s + (0.818 + 3.92i)20-s − 0.791i·22-s + 3.10i·23-s + ⋯
L(s)  = 1  + 0.323i·2-s + 0.895·4-s + (0.204 + 0.978i)5-s + 0.377i·7-s + 0.612i·8-s + (−0.316 + 0.0660i)10-s − 0.522·11-s + 0.0578i·13-s − 0.122·14-s + 0.697·16-s + 0.729i·17-s + 0.506·19-s + (0.182 + 0.876i)20-s − 0.168i·22-s + 0.646i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 945 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.204 - 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 945 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.204 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(945\)    =    \(3^{3} \cdot 5 \cdot 7\)
Sign: $-0.204 - 0.978i$
Analytic conductor: \(7.54586\)
Root analytic conductor: \(2.74697\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{945} (379, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 945,\ (\ :1/2),\ -0.204 - 0.978i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.20492 + 1.48237i\)
\(L(\frac12)\) \(\approx\) \(1.20492 + 1.48237i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-0.456 - 2.18i)T \)
7 \( 1 - iT \)
good2 \( 1 - 0.456iT - 2T^{2} \)
11 \( 1 + 1.73T + 11T^{2} \)
13 \( 1 - 0.208iT - 13T^{2} \)
17 \( 1 - 3.00iT - 17T^{2} \)
19 \( 1 - 2.20T + 19T^{2} \)
23 \( 1 - 3.10iT - 23T^{2} \)
29 \( 1 + 5.65T + 29T^{2} \)
31 \( 1 - 0.582T + 31T^{2} \)
37 \( 1 + 8.16iT - 37T^{2} \)
41 \( 1 - 6.47T + 41T^{2} \)
43 \( 1 + iT - 43T^{2} \)
47 \( 1 + 1.73iT - 47T^{2} \)
53 \( 1 + 1.37iT - 53T^{2} \)
59 \( 1 - 13.0T + 59T^{2} \)
61 \( 1 - 0.208T + 61T^{2} \)
67 \( 1 - 12.3iT - 67T^{2} \)
71 \( 1 + 14.4T + 71T^{2} \)
73 \( 1 - 4.58iT - 73T^{2} \)
79 \( 1 - 10.3T + 79T^{2} \)
83 \( 1 - 6.83iT - 83T^{2} \)
89 \( 1 + 8.66T + 89T^{2} \)
97 \( 1 + 12.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37876496300197038281522315175, −9.582931155121847458944338677565, −8.435020500840356187283413593650, −7.49051744044333367648982493934, −7.03208752360052389409158717116, −5.90041839748926584625368956789, −5.53715204006036105135016651729, −3.81625389619872700209845439160, −2.77740693530013879583669126319, −1.89713942362452134568231293296, 0.878488367702562355798360889511, 2.13676905240918307572456650368, 3.26175817970916382456223331011, 4.49283027807220937115158583497, 5.42942591102412229167848976217, 6.35711525631442395683557098426, 7.38556193354714628015959539176, 8.024573625067698947294585721468, 9.127103790621161979293477164325, 9.888784255444233379242062813190

Graph of the $Z$-function along the critical line