L(s) = 1 | − 2-s − 4-s − 5-s + 3·8-s + 10-s + 11-s + 2·13-s − 16-s + 6·17-s + 19-s + 20-s − 22-s + 8·23-s + 25-s − 2·26-s + 6·29-s + 4·31-s − 5·32-s − 6·34-s − 2·37-s − 38-s − 3·40-s + 10·41-s + 4·43-s − 44-s − 8·46-s − 7·49-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1/2·4-s − 0.447·5-s + 1.06·8-s + 0.316·10-s + 0.301·11-s + 0.554·13-s − 1/4·16-s + 1.45·17-s + 0.229·19-s + 0.223·20-s − 0.213·22-s + 1.66·23-s + 1/5·25-s − 0.392·26-s + 1.11·29-s + 0.718·31-s − 0.883·32-s − 1.02·34-s − 0.328·37-s − 0.162·38-s − 0.474·40-s + 1.56·41-s + 0.609·43-s − 0.150·44-s − 1.17·46-s − 49-s + ⋯ |
Λ(s)=(=(9405s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(9405s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.477230617 |
L(21) |
≈ |
1.477230617 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+T |
| 11 | 1−T |
| 19 | 1−T |
good | 2 | 1+T+pT2 |
| 7 | 1+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1−6T+pT2 |
| 23 | 1−8T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1−14T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1−4T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+16T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.80887232048572540682333420947, −7.22327720234686822026420079539, −6.52535200691129039267664712399, −5.53828988498538538917364873372, −4.96830657216051678599610525118, −4.15724232120626547947827499344, −3.49732228870449175323239470061, −2.64373224217327831161992119768, −1.19373409267433679159515614244, −0.823941476270948826303287224898,
0.823941476270948826303287224898, 1.19373409267433679159515614244, 2.64373224217327831161992119768, 3.49732228870449175323239470061, 4.15724232120626547947827499344, 4.96830657216051678599610525118, 5.53828988498538538917364873372, 6.52535200691129039267664712399, 7.22327720234686822026420079539, 7.80887232048572540682333420947